首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactobacillus strains were added as an adjunct to the regular lactic starter in Cheddar cheese manufacture in order to accelerate ripening. Microbial cheese proteolysis resulted in the release of free amino acids which were extracted with the astringent and bitter fractions and separated by size-exclusion and reversed-phase HPLC chromatography. Lactobacillus strains generally increased the degree of proteolysis. L. plantarum and L. brevis produced off-flavors possibly due to an accumulation of medium-size peptides. The control cheese (without lactobacilli) had the most peptides with a mean molecular- weight of < 1000 daltons and had a flavor described as slightly bitter. Addition of L. casei-casei L2A accelerated ripening and yielded a well-aged Cheddar cheese without any bitterness even after 7 months at 6°C.  相似文献   

2.
This study provided genetic information on a bile salt hydrolase (bsh) of a Lactobacillus plantarum strain of Indian origin, MBUL90. L. plantarum strains were screened by PCR for the determination of the bsh locus in their genome using specific primers. None of the lactobacilli strains produced the expected size of amplicon (~ 1.0 kb) except L. plantarum strains, which proved the specificity of the primers. The bsh amplicon of L. plantarum MBUL90 was cloned into pDrive vector, and nucleotide sequences were determined. Sequence analysis of bsh genes revealed a high level of similarity within the species of L. plantarum as well as with other species of Lactobacillus. The resulting nucleotide sequence of an ORF of 975 bp encoded a predicted protein of 324 amino acids representing a theoretical molecular mass of 37 kDa with a pI of 4.92. The protein deduced from the complete ORF had high similarity with other Bsh proteins, and four highly conserved amino acid motifs (YFGRNXD, NEXGLXXAGLNF, VXVLTNNPXF, and SXSRFVRXAF) were located around the active site. Genetic data presented in this paper provide a sound foundation for better understanding the genetic diversity of bsh in Lactobacillus genus and may provide a new genetic marker for phylogenetic study.  相似文献   

3.
The probiotic strains Lactobacillus brevis CCMA1284 and Lactobacillus plantarum CCMA0359 were microencapsulated by spray drying using different matrices – whey powder (W), whey powder with inulin (WI) and whey powder with maltodextrin (WM). Viability of the microencapsulated strains in acid and bile juices and during 90 days of storage (seven and 25 °C) was evaluated. The two strains exhibited high encapsulation efficiency (> 86%) by spray drying. The different matrices maintained L. plantarum viability above six log CFU g−1 at 7 °C for 90 days, whereas similar results for L. brevis were observed only for W. The use of inulin as matrix of encapsulation did not enhance bacterial viability in the evaluated conditions. In general, the use of W and WM as matrices was effective for L. plantarum viability. However, only W was effective for L. brevis in the evaluated conditions. The spray drying technique was successfully adopted for the encapsulation of L. plantarum CCMA0359 and L. brevis CCMA1284 strains.  相似文献   

4.
Species of Lactobacillus were isolated and identified from commercial Washington state grapes and wines including L. brevis (4 strains), L. hilgardii (4), L. plantarum (3), and L. fructivorans (1). Unlike other strains, L. brevis and L. pluntarum grew in media at relatively low pH (pH 3.16 and 3.34). Sulfur dioxide inhibited all strains as growth was delayed in 33 mg/L total SO2 (pH 3.5). None of the strains grew in 12% or 14% ethanol. Alcoholic fermentations of two grape musts were not slowed in the presence of strains of L. brevis, L. hilgardii, or L. plantarum.  相似文献   

5.
Blanched and brined cucumbers and green beans were fermented with pure cultures of lactic acid bacteria by use of a dialyzer with microporous membrane separating the continuously circulated vegetable brines and cultures. Dialysis fermentations were conducted separately with Lactobacillus brevis, L. plantarum and Pediococcus cerevisiae; L. brevis performed the most satisfactorily. Maximal populations of all three species were lo-100 times higher in the dialysis cultures than when cultivated directly in blanched cucumber brines. Five lots of the vegetables were fermented consecutively for 8 wk with the same culture of L. brevis. Addition of calcium acetate as a pH buffer increased cell populations, extended cell viability, and increased fermentation rates.  相似文献   

6.
The adaptability of lactic acid bacteria (LAB) and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava was investigated using PCR-DGGE and bacteriological culture combined with rRNA gene sequence analysis. Sourdoughs were prepared either from flours of the cereals wheat, rye, oat, barley, rice, maize, and millet, or from the pseudocereals amaranth, quinoa, and buckwheat, or from cassava, using a starter consisting of various species of LAB and yeasts. Doughs were propagated until a stable microbiota was established. The dominant LAB and yeast species were Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pontis, Lactobacillus spicheri, Issatchenkia orientalis and Saccharomyces cerevisiae. The proportion of the species within the microbiota varied. L. paralimentarius dominated in the pseudocereal sourdoughs, L. fermentum, L. plantarum and L. spicheri in the cassava sourdough, and L. fermentum, L. helveticus and L. pontis in the cereal sourdoughs. S. cerevisiae constituted the dominating yeast, except for quinoa sourdough, where I. orientalis also reached similar counts, and buckwheat and oat sourdoughs, where no yeasts could be detected. To assess the usefulness of competitive LAB and yeasts as starters, the fermentations were repeated using flours from rice, maize, millet and the pseudocereals, and by starting the dough fermentation with selected dominant strains. At the end of fermentation, most of starter strains belonged to the dominating microbiota. For the rice, millet and quinoa sourdoughs the species composition was similar to that of the prior fermentation, whereas in the other sourdoughs, the composition differed.  相似文献   

7.
 Four Lactobacilli were isolated from both commercial cowmilk yoghurt ("Fan" yoghurt) and "wara", a West African soft cheese. They were identified as Lactobacillus acidophilus ("Fan" yoghurt), L. plantarum, L. brevis and unidentified Lactobacillus spp. ("wara"). L. acidophilus and L. plantarum were chosen as starter organisms for the production of a yoghurt-like product from cowpea milk. There was a decrease in the final pH and an increase in the titratable acidity of the cowpea milk samples at the end of the fermentation period. The crude protein, total ash, calcium, potassium and phosphorus values increased in the fermented cowpea milk, while a decrease was obtained for the lipid, moisture and crude fibre contents. A decreasing trend was noted in the phytic acid and trypsin inhibitor of the cowpea flour when processed into milk, followed by a further reduction at the end of fermentation. Consumer acceptability of the cowpea yoghurt varied, with preference being given to the banana and strawberry flavoured samples. Received: 10 June 1996 / Revised version: 17 September 1997  相似文献   

8.
The distribution and identification of lactobacilli during fermentation of okra were studied. Fermentation characteristics of lactobacilli isolated on MRS agar at 30°C under anaerobic conditions were presented using the API 50 CHL system. The phenogram constructed by an unweighted, pair group, arithmetic average, linkage method and by use of the Jacquard similarity coefficient (1-Sj) was used to identify nine phena. The studies showed five homolactic species initially (Lactobacillus plantarum, Lactobacillus casei subsp. pseudoplantarum, Lactobacillus acidophilus, Lactobacillus leichmannii, Lac-tobacillus salivarius subsp. salicinius) and two heterolactic species (Lactobacillus cellobiosus and Lactobacillus brevis). After 24 hr fermentation, the majority of the isolated strains were L. cellobiosus. During the final stage of fermentation L. plantarum strains dominated.  相似文献   

9.
The microbial dynamics of Dutch-type cheeses differing in starter (commercial DL starter or single strain of Lactococcus lactis ssp. cremoris), adjunct (Lactobacillus or Propionibacterium) and fat contents (10% or 28% fat) were investigated by culture-dependent and culture-independent analysis. The cheese microbiota was dominated by the adjunct Lactobacillus after 4 weeks of ripening and the fat content did not influence the microbial diversity. The Leuconostoc sp., presumably from the DL starter, was detected in cheeses made with added Lactobacillus plantarum and Lactobacillus rhamnosus and was not detected in cheese made with added Lactobacillus paracasei after 4 and 7 weeks. No Lactobacillus spp. were detected in cheese with added Propionibacterium, while Leuconostoc was the only species detected. In cheeses made with Lc. lactis ssp. cremoris as starter, the Lactobacillus microbiota was similar to the cheese milk microbiota after 24 h while after 4 weeks different species of Lactobacillus and Leuconostoc were detected.  相似文献   

10.
The diversity and dynamics of the dominant microbial communities arising during the manufacture and ripening of four batches of naturally fermented Cabrales cheese were investigated by the PCR-DGGE culture-independent technique. Total microbial DNA was extracted from cheese milk, curd and cheese samples and used as template material in PCR experiments to amplify the V3 region of the bacterial 16S rRNA gene, plus the D1 region of the eukaryotic 26S rRNA gene. These regions were then analysed using DGGE. Eukaryotic and bacterial bands were identified by isolation, reamplification and sequencing. The results were compared to those obtained in a previous microbial characterization of the same four batches using classical culturing methods. Great variability was recorded between batches by the PCR-DGGE technique. This was also shown by culturing, and underlines the uniqueness of artisanal products. Lactocococcus lactis subsp. lactis was dominant from the cheese milk stage until the end of ripening, whereas populations of certain Lactobacillus species appeared during ripening. Populations of species never isolated by culturing were found to be numerous by the PCR-DGGE method, in particular Lactococcus garvieae and Lactococcus raffinolactis. Other, completely unknown lactococci were also detected. The dominant eukaryotic populations from day 15 onwards were those of Penicillium roqueforti and Geotrichum candidum.  相似文献   

11.
In this study, the culture-dependent and culture-independent molecular methods were used for the identification of lactic acid bacteria (LAB) in sucuk a Turkish fermented dry sausage. On the one hand, the PCR-DGGE method targetting the V1 and V3 regions of 16S DNA was applied to DNA that was directly extracted from sucuk samples. On the other hand, rep-PCR fingerprinting was performed for the primary differentiation and grouping of the isolates, and the results were confirmed by sequencing of the 16S rDNA and 16S-23S rDNA intergenic spacer region. As a result of the PCR-DGGE analysis of all the samples, total 8 different lactic acid bacteria were identified, and Lactobacillus sakei, Lactobacillus curvatus and Weissella viridescens were the dominant microbiota among these bacteria. The culture-dependent approach indicated that the majority of the strains belonged to the Lactobacillus genera including Lb. sakei, Lactobacillus plantarum, Lb. curvatus, Lactobacillus brevis, Lactobacillus farciminis and Lactobacillus alimentarius. However, Leuconostoc and Weisella were also detected as minor genera. Again, Lactococcus piscium, Weissella halotolerans, Staphylococcus succinus and the comigrated Staphylococcus piscifermentans/Staphylococcus condimenti/Staphylococcus carnosus group were detected only with the culture-independent method while Lb. plantarum, Leuconostoc mesenteroides and Leuconostoc citreum were identified only by using the culture-dependent method. In the results, it was concluded that the combination of culture-dependent and culture-independent methods was necessary for reliable and detailed investigation of LAB communities in fermented food products.  相似文献   

12.
BACKGROUND: Artisanal vegetable fermentations are very popular in Eastern European countries. Fresh vegetables undergo a spontaneous fermentation in the presence of salt, which is mainly carried out by lactic acid bacteria (LAB). RESULTS: Culture‐dependent and culture‐independent analyses of end‐samples of various spontaneous vegetable fermentations carried out in houses of the Chiodju region (central Romania) revealed Lactobacillus plantarum and Lactobacillus brevis as the most frequently isolated LAB species. Leuconostoc mesenteroides and Leuconostoc citreum were also found. Furthermore, the community dynamics of spontaneous cauliflower and mixed‐vegetable (green tomatoes, carrots and cauliflower) fermentations revealed three steps: an initial phase characterised by the presence of Enterobacteriaceae and a wide LAB species diversity, encompassing Weissella species; a second phase from day 3 onwards wherein L. citreum and Lb. brevis occurred; and a final phase characterised by the prevalence of Lb. brevis and Lb. plantarum. Metabolite target analysis revealed that glucose and fructose were mostly depleted at the end of fermentation. The main products of carbohydrate metabolism were lactic acid, acetic acid, ethanol and small amounts of mannitol, indicating heterolactate fermentation. CONCLUSION: Given their prevalence at the end of vegetable fermentations, Lb. brevis and Lb. plantarum appear to be good candidate starter cultures for controlled vegetable fermentation processes. © 2012 Society of Chemical Industry  相似文献   

13.
Sixty-three strains of the taxonomically related species Lactobacillus plantarum subsp. plantarum, L. plantarum subsp. argentoratensis, L. paraplantarum and L. pentosus isolated from sourdoughs and other food and non-food sources and 14 strains of other members of the genus Lactobacillus were screened for their tolerance of acid, alkaline, heat, oxidative, osmotic, detergent and starvation stresses in order to evaluate the diversity of stress response. Most strains of the L. plantarum group were highly tolerant of acid, alkaline and osmotic stress and highly sensitive to detergent stress, while a larger diversity was found for other stress. Multivariate analysis allowed grouping the strains in clusters with similar response patterns. Stress response patterns in the L. plantarum group were similar to those of species of the L. casei/L. paracasei group but clearly different from those of other mesophilic Lactobacillus. No relationship was found between grouping obtained on the basis of stress response patterns and by genotypic fingerprinting (rep-PCR), nor with the taxonomic position or isolation source of the strains. Further experiments with selected strains showed that exponential phase cells were generally but not always more sensitive than stationary phase cells. The ability to grow under stressful conditions showed a slightly better correlation with the ecological conditions prevailing in the isolation niches of the strains.This study will be the basis for further investigations to identify and exploit the basis of diversity in the stress response of lactic acid bacteria.  相似文献   

14.
The aim of this work was to study the suitability of camel milk for the production of dairy products by lactic acid fermentation. Sixty strains of lactic acid bacteria (LAB) were isolated from camel milk. The strains were tested for their acidification activity, ability to use citrate, exopolysaccharide production, lipolytic, proteolytic activities and resistance to antibiotics. Ten strains were investigated for their ability to metabolize carbohydrates and that resulted in the identification of 5 Lactococcus lactis, 1 Lactobacillus pentosus, 2 Lactobacillus plantarum, 1 Lactobacillus brevis and 1 Pediococcus pentosaceus strains. Two strains of Lactococcus lactis SCC133 and SLch14 were selected to produce traditional Tunisian fermented dairy products (Lben, Raib, Jben cheese and Smen). These strains were chosen based on their acid production capacity and their ability to produce a high yield of biomass.  相似文献   

15.
Nonstarter lactic acid bacteria are the main uncontrolled factor in today's industrial cheese making and may be the cause of quality inconsistencies and defects in cheeses. In this context, adjunct cultures of selected lactobacilli from nonstarter lactic acid bacteria origin appear as the best alternative to indirectly control cheese biota. The objective of the present work was to study the technological properties of Lactobacillus strains isolated from cheese by in vitro and in situ assays. Milk acidification kinetics and proteolytic and acidifying activities were assessed, and peptide mapping of trichloroacetic acid 8% soluble fraction of milk cultures was performed by liquid chromatography. In addition, the tolerance to salts (NaCl and KCl) and the phage-resistance were investigated. Four strains were selected for testing as adjunct cultures in cheese making experiments at pilot plant scale. In in vitro assays, most strains acidified milk slowly and showed weak to moderate proteolytic activity. Fast strains decreased milk pH to 4.5 in 8 h, and continued acidification to 3.5 in 12 h or more. This group consisted mostly of Lactobacillus plantarum and Lactobacillus rhamnosus strains. Approximately one-third of the slow strains, which comprised mainly Lactobacillus casei, Lactobacillus fermentum, and Lactobacillus curvatus, were capable to grow when milk was supplemented with glucose and casein hydrolysate. Peptide maps were similar to those of lactic acid bacteria considered to have a moderate proteolytic activity. Most strains showed salt tolerance and resistance to specific phages. The Lactobacillus strains selected as adjunct cultures for cheese making experiments reached 108 cfu/g in soft cheeses at 7 d of ripening, whereas they reached 109 cfu/g in semihard cheeses after 15 d of ripening. In both cheese varieties, the adjunct culture population remained at high counts during all ripening, in some cases overcoming or equaling primary starter. Overall, proximate composition of cheeses with and without added lactobacilli did not differ; however, some of the tested strains continued acidifying during ripening, which was mainly noticed in soft cheeses and affected overall quality of the products. The lactobacilli strains with low acidifying activity showed appropriate technological characteristics for their use as adjunct cultures in soft and semihard cheeses.  相似文献   

16.
Ethyl carbamate (EC) is a carcinogenic compound derived from the spontaneous reaction of ethanol with urea or citrulline in Chinese rice wine. Polymerase chain reaction–denaturing gradient gel electrophoresis showed that five species, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus brevis, Lactococcus lactis and Lactobacillus coryniformis were the most abundant bacteria in the Chinese rice wine production process. Five strains belonging to these species can degrade arginine primarily in the exponential growth phase and accumulate citrulline in MRS‐Arg medium. In addition, an L. brevis strain was shown to be capable of assimilating citrulline, indicating the potential of this strain suggesting a potential route to reduce citrulline content and ethyl carbamate formation in Chinese rice wine fermentation. Copyright © 2018 The Institute of Brewing & Distilling  相似文献   

17.
Lactobacilli are considered to be one of the most important potential probiotics in the dairy industry. Twelve strains of Lactobacillus were isolated from home-made koumiss samples, a traditionally fermented mare milk in China. The isolates were identified based on physiological and biochemical characteristics and analysis of 16S RNA sequences. They were proven to be Lactobacillus helveticus, Lactobacillus fermentum, Lactobacillus casei and Lactobacillus plantarum. The results demonstrated that both methods were essential to identify an isolate accurately.  相似文献   

18.
The potential to degrade 15 food phenolic acids was investigated for several Lactobacillus brevis strains isolated from different sources. All the strains analysed in this study showed a similar metabolism on phenolic acids. Among the cinnamic acids assayed, only p-coumaric, ferulic and caffeic acids were metabolized by the L. brevis strains. These acids were decarboxylated to produce their corresponding vinyl derivatives. Contrarily to the results previously reported on Lactobacillus plantarum, the L. brevis strains analysed in this study were unable to subsequently reduce or metabolize these vinyl derivatives. In L. brevis, vinyl phenol, vinyl catechol, and vinyl guaiacol were the final metabolic products from p-coumaric, caffeic or ferulic acids, respectively. From the benzoic acids analysed, and similarly to L. plantarum strains, only gallic and protocatechuic acids were modified by L. brevis strains. Both acids were decarboxylated to pyrogallol and catechol, respectively. Currently, the enzymes involved in the metabolism of phenolic acids in L. brevis remain uncharacterized.  相似文献   

19.
Antisera have been prepared using Lactobacillus brevis, L. casei var. alactosus and L. casei var. rhamnosus. The interaction between these and the acid-soluble antigens of a range of Lactobacillus strains, most of which were isolated from beer, has been studied using a gel diffusion precipitin test; the fluorescent antibody staining technique was used to observe the reaction between whole cells and the antisera. Gel diffusion demonstrated the presence of specific, group and non-specific antibodies. Thus, each antiserum contained (i) a specific antibody towards the organism used to produce the antiserum and towards others in the same taxonomic unit and (ii) a non-specific antibody reacting with antigens from each of the strains of Lactobacillus and also with cells of Pediococcus cerevisiae and Saccharomyces cerevisiae. Additionally (iii) a serum prepared against L. casei var. rhamnosus contained a group antibody which reacted with an antigen present in Streptobacteria but not in Betabacteria, whilst an antiserum made using L. brevis contained group antibodies reacting with L. brevis and L. plantarum. Fluorescent antibody staining confirmed these distinctions and, using adsorbed sera, allowed the rapid identification of lactobacilli which cause beer spoilage.  相似文献   

20.
Spontaneous milk fermentation has a long history in Mongolia, and beneficial microorganisms have been handed down from one generation to the next for use in fermented dairy products. The objective of this study was to investigate the diversity of lactic acid bacteria (LAB) communities in fermented yak, mare, goat, and cow milk products by analyzing 189 samples collected from 13 different regions in Mongolia. The LAB counts in these samples varied from 3.41 to 9.03 log cfu/mL. Fermented yak and mare milks had almost identical mean numbers of LAB, which were significantly higher than those in fermented goat milk but slightly lower than those in fermented cow milk. In total, 668 isolates were obtained from these samples using de Man, Rogosa, and Sharpe agar and M17 agar. Each isolate was considered to be presumptive LAB based on gram-positive and catalase-negative properties, and was identified at the species level by 16S rRNA gene sequencing, multiplex PCR assay, and restriction fragment length polymorphism analysis. All isolates from Mongolian dairy products were accurately identified as Enterococcus faecalis (1 strain), Enterococcus durans (3 strains), Lactobacillus brevis (3 strains), Lactobacillus buchneri (2 strains), Lactobacillus casei (16 strains), Lactobacillus delbrueckii ssp. bulgaricus (142 strains), Lactobacillus diolivorans (17 strains), Lactobacillus fermentum (42 strains), Lactobacillus helveticus (183 strains), Lactobacillus kefiri (6 strains), Lactobacillus plantarum ssp. plantarum (7 strains), Lactococcus lactis ssp. lactis (7 strains), Leuconostoc lactis (22 strains), Leuconostoc mesenteroides (21 strains), Streptococcus thermophilus (195 strains), and Weissella cibaria (1 strain). The predominant LAB were Strep. thermophilus and Lb. helveticus, which were isolated from all sampling sites. The results demonstrate that traditional fermented dairy products from different regions of Mongolia have complex compositions of LAB species. Such diversity of LAB provides useful information for further studies of probiotic strain selection and starter culture design, with regard to the industrial production of traditional fermented milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号