首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
利用压力搜索法测定了丁辛醇弛放气在温度为274.15~280.15K下的水合物生成压力。结果表明,丁辛醇弛放气在去离子水体系下的生成压力较低,且目标气体组分C3较其他气体组分的水合物生成压力更低,因此可以利用水合物法对弛放气进行分离。采用Chen-Guo模型对弛放气在纯水中生成水合物的数据进行了计算,得到了较为满意的计算结果,平均误差为6.43%,说明Chen-Guo模型能够较好地预测该类体系的水合物的生成条件。通过分析水合物法回收C3气体的可行性,提出了相应的工艺流程。  相似文献   

2.
石油和天然气行业正努力寻求更好的天然气水合物管理方法,因此需要更好地了解多相流中水合物的形成和堵塞趋势。利用高压可视流动环路研究了二氧化碳水合物的形成和水合物浆液在完全分散和部分分散系统流动条件下的性质。结果表明,在高含水率的完全分散相体系中,气体分子与水的接触面积较大,能够充分地生成水合物,对环路内流量有较大的影响;对于不同含水率条件下的两种体系,由于高含水率体系中的油水界面被破坏得较严重,生成的大量水合物更容易堵塞环路,而低含水率体系中的油水界面在被破坏后能够生成新的油水界面,因此堵管风险较低。深入地了解水合物的形成过程和稳定性,能够准确地预测和应对堵塞的风险,对开发高效水合物管理策略是至关重要的。  相似文献   

3.
大气中大量温室气体的排放特别是二氧化碳,已被广泛认为是造成全球气候变化的主要原因.研究结果显示,将二氧化碳封存到海洋是可行的,二氧化碳水合物水是需要考虑的重要问题.关于二氧化碳水合物在海水中的生成、扩散、溶解规律,不同的学者提出了不同模型与结论,但仍有很多不确定因素.通过数值模拟分析得出,封存过程中二氧化碳的释放速率、溶解速率和上升速度都是需要考虑的重要参数,液滴半径越小或者注入深度越浅时,其溶解速率将会越快.在同一深度下液滴由大半径溶解成小半径时,在海水中的溶解速率将越来越快.液滴在海水中并非以同一速度往上运动,而是与液滴的大小和位置有关.当注入深度增加时,可允许溶解的液滴半径随之增加,其中当注入深度在1 800m时,可允许最大液滴半径为1.0cm,在1 000m深度下,可允许最大的液滴半径为0.5cm.  相似文献   

4.
天然气水合物作为一种新型能源,90%储存于海洋环境中,其中以海底砂岩水合物储量最高,质量最好,最具开发价值。从海底砂岩水合物生成影响因素及储量预测两个方面的研究进展进行了分析和介绍。在生成影响因素方面,主要阐述了海底砂岩粒径、界面特性、盐的浓度和气体组分对砂岩型水合物形成量的影响,并分析了其影响原因;在储量预测方面,总结了勘探和数值分析的研究进展,分析了砂岩水合物储量的预测方案,并提出了海底砂岩水合物的研究方向:一是研究海底砂岩粒径对水合物的影响还没有统一的结论,这可能是由于不同学者对于粒径范围没有一个统一的划分,因此把砂岩粒径统一到孔隙度对水合物的影响进行研究,更贴近海底砂岩水合物的实际情况;二是建立盐浓度与海底砂岩深度的函数关系,可以更准确预测水合物储量。  相似文献   

5.
水合物技术在天然气储运、二氧化碳捕集与封存、气体分离和冷能等领域具有广阔的应用前景。自然条件下,水合物普遍存在着生成速率低、应用环境限制多等因素,因此常采用物理法或化学法来改善其工业化生产条件。物理法和化学法具有生成速率高、储气量高的优点,但存在能耗高、设备成本高、环境污染等问题。近年来,电场对水合物的影响及其作用机理吸引了众多学者的关注与研究。本研究综述了学者们在不同电场环境下对TBAB、THF、CH_4、CO_2水合物生成与分解进行的分子动力学模拟以及实验的研究进展,包括研究条件、作用效果以及电场对水合物的作用机理。从众多的研究结果得出,电场对水合物的生成与分解具有积极影响,有利于实际应用,值得继续研究及探索。  相似文献   

6.
表面活性剂在瓦斯水合物生成过程中动力学作用   总被引:2,自引:0,他引:2  
促进水合物快速生成是利用水合物技术预防煤与瓦斯突出和进行煤层气储存运输的关键,表面活性剂作为水合物生成的促进剂,对其动力学促进作用进行研究十分必要.利用水合物实验设备,研究了4种表面活性剂(T40,T80,SDS,SDBS)溶液体系中瓦斯水合物的生成过程,结合建立的水合物诱导时间和生成速度模型对实验数据进行了计算和分析.结果表明:表面活性剂的加入降低了溶液的表面张力,促进了烷烃类气体溶解,加快了晶核形成过程,缩短了水合物生成的诱导时间,提高了生成速度,加快了水合物形成的动力学进程.  相似文献   

7.
天然气深水集输管道内极易生成水合物,研究其形成影响因素对管道的安全运行具有重要意义。采用PVTsim建立了数值模型,并基于5种实验数据对模型进行了可靠性分析。利用该模型,模拟在不同工况下天然气形成水合物的边界条件,基于实验和OLGA模拟数据得到了水合物体积分数与介质摩尔分数的定量关系。研究表明,相比压力,水合物的形成受温度的影响更大。在天然气中,加入乙烷、丙烷、二氧化碳、硫化氢,均会使水合物形成范围扩大,而加入氮气,会使水合物形成范围缩小。随着水中盐度的增大,水合物生成范围缩小。外界温度、压力对水合物生成量的影响较小,几乎可忽略不计。基于水合物浆输送技术的研究成果,得到了保障HCFC⁃141b型和THF型水合物浆流动安全的临界甲烷摩尔分数。  相似文献   

8.
HCFC141b气体水合物快速生成实验研究   总被引:2,自引:0,他引:2  
制冷剂气体水合物快速均匀生成是气体水合物蓄冷技术实用化的关键.1~7℃内,实验中首次发现与试管壁面接触的铁丝对表面活性剂(十二烷基苯磺酸钠)水溶液与HCFC141b(CH3CC l2F,R141b)液体静态生成气体水合物有巨大影响:铁丝与壁面的接触位置改变了R141b气体水合物的成核点和生成区域,明显缩短了气体水合物的引导时间,大大加快了水合反应,相同条件下,穿过两相界面(十二烷基苯磺酸钠水溶液和R141b液体界面)与试管侧壁面接触的铁丝对R141b气体水合物生成的诱导作用最强;气体水合物不但可以在水和制冷剂液体两相界面上或水相中首先生成,而且也可以在制冷剂相中独立完成;水分子贴着玻璃壁面要比直接通过R141b液体容易扩散;水合率随恒温槽温度的变化表明环境温度仍然是决定水合反应快慢的基本因素之一.  相似文献   

9.
为了反映温—压环境对水合物沉积物力学特性的影响,定义新的温—压状态参数. 从温—压环境对沉积物细观结构的作用机制出发,采用三相球模型提出考虑温—压环境对水合物沉积物细观各组分和各组分间接触界面影响的多尺度弹性参数预测模型. 基于传统Duncan-Chang模型与统计损伤理论,引入极限损伤值,建立Duncan-Chang统计损伤模型. 对比在不同温—压环境条件下水合物沉积物的三轴试验结果与模型预测结果,验证所提模型的有效性和合理性. 结果表明:该模型能够考虑水合物饱和度、温—压环境以及沉积物骨架的粒径级配影响,能够较好地模拟水合物沉积物在不同温—压环境下应力—应变全过程.  相似文献   

10.
表面活性剂对气体水合物生成诱导时间的作用机理   总被引:3,自引:0,他引:3  
利用可视化水合物实验设备,研究了摩尔浓度均为1.0×10-3mol/L的3组溶液(T40、T40/T80(1∶1)、T40/T80(4∶1))体系中表面活性剂对气体水合物生成诱导时间的影响,运用直接观测法测定了水合物广义诱导时间,基于物质传递模型、水合物晶核生长模型及相平衡驱动力方程对实验结果进行了分析。结果表明:表面活性剂的增溶作用促使气体分子在溶液中过饱和,促进了体相-水合物晶体之间的物质传递,为气体水合物反应过程中主体分子(水)和客体分子(气体)的络合提供了驱动力;表面活性剂的自身结构特性及其水溶液的状态决定了其在超过临界胶束浓度(CMC)后胶束化,进而束缚气体分子并与水分子形成团簇,团簇的增多、胶束内空余空间的减少,使团簇互相碰撞接触的机会增多,促进了晶核形成;表面活性剂的增溶作用显著降低了被增溶物的化学势,使体系变得更加稳定,促进了水合物生成相平衡。比较表明:表面活性剂T40在促进水合物晶核生成、缩短诱导时间方面的作用显著。  相似文献   

11.
当二氧化碳注入海底后,液体二氧化碳或者二氧化碳水合物能否稳定存在,其中重要的参数之一就是不同情况下二氧化碳在液体中的扩散系数。在水温4~30℃,压力为1MPa下,用自制的实验设备测量了二氧化碳的扩散系数。结果表明,在高压条件下,扩散系数是一个与浓度有关的量。根据短时间内扩散量与时间平方根之间存在着线性关系,引入不定函数描述与浓度有关的扩散过程,得到了二氧化碳-水体系与浓度相关的扩散系数的数据,并拟合得到了所研究情况下二氧化碳的扩散系数与温度、浓度等因素之间的计算式。  相似文献   

12.
天然气水合物具有气含率高、污染低、储量大等优点,具有良好的发展前景,因此对天然气水合物进行研究很有必要。以海底输送管道为研究背景,在多相流模型的基础上,建立了基于有限体积法的天然气水合物气-固两相流问题的数学模型,并进行了数值计算与分析,得出了直径差(管径与通流直径之差)与距管道入口距离之间的关系。设定管道入口流速和管径规格为定值,通过直径差分析了管道中水合物的堆积位置。计算结果表明,在其他条件不变的情况下,随着距管道入口距离的增加,直径差的变化规律符合Gauss曲线函数,并对此进行了拟合,得到了Gauss函数方程,利用此方程在给定管道位置的情况下能计算直径差。最后,通过改变管径大小进行了模拟和分析,得知Gauss函数方程也适用于不同管径的管道,可为预测水合物在管道中的堆积位置以及提高天然气水合物输送效率提供理论依据。  相似文献   

13.
储粮中CO2气体的扩散特性及霉菌活动监测研究   总被引:1,自引:0,他引:1  
将一定量高水分粮食作为模拟霉变点,按照试验的需要埋设在模拟储藏粮堆内,研究霉菌生长产生CO2气体在粮堆中的扩散特性,探索利用气体扩散规律监测储粮霉菌活动的可能性.结果表明:CO2气体可在粮堆中快速扩散,高温能进一步提高扩散速率,30℃比15℃试验组扩散400 mm的速率高58%;霉变发生部位的CO2气体浓度显著高于相隔一定距离检测点的CO2浓度(P<0.05),但两点间不同浓度CO2气体的扩散比值没有显著差异(P>0.05);在敞口储藏状态下,粮堆表面CO2气体散失量较大,检测靠近粮堆表层的CO2气体浓度难以准确反映粮堆的霉菌活动状况.CO2气体在粮堆水平方向的扩散具有向底部沉降的特性,可重点在粮堆的中、下层设置气体检测点,以便灵敏、可靠地监测储粮霉菌的危害.  相似文献   

14.
利用高能气体压裂技术开采天然气水合物可行性分析   总被引:5,自引:0,他引:5  
天然气水合物是一种新型洁净能源,其蕴藏量约为现有地球化石燃料含碳量总和的两倍,天然气水合物资源开发已经引起了全世界的关注.提出了先利用高能气体压裂技术对储层进行压裂后再结合电磁加热或降压法开采,或者利用加热法和降压法结合开采的思路,以期达到经济有效开采的目的.  相似文献   

15.
CO2被注入油层后,约有40%~50%(体积分数)随着油田采出液伴生气溢出,采出液中含有大量CO2及水,针对脱除CO2驱采出气中CO2开展实验模拟研究,采用耐压实验装置模拟CO2驱采出伴生气特性,结合胜利油田CO2驱现场实际情况,在中压条件下对碳酸钾及其与哌嗪的复合溶液进行了实验研究,记录不同浓度溶液在不同温度、压力、时间下的进出气量,揭示了吸收速率、吸收容量与时间、溶液浓度的内在关系;对吸收饱和的富液进行了再生实验,详细记录CO2初始析出温度,富液再生温度,富液再生能耗及富液再生率,并进行对比分析。通过实验结果综合分析,筛选出质量分数为30%碳酸钾+3%哌嗪溶液是较优的二元复合溶液,在油田CO2驱采出气CO2捕集领域具有较佳的科研价值和工业应用前景。  相似文献   

16.
单酯基季铵盐的生物降解程度受曝气量、接种物浓度、有机物数量、温度等多种环境条件的影响。文章采用二氧化碳生成量法测试水体中单酯基季铵盐生化反应的最佳环境条件。结果显示,恒温水槽温度为25℃,气体流量为16L/h,接种物浓度为100mgMLSS/L,有机物浓度为20mgDOC/L时,单酯基季铵盐10d的生物降解率为30.72%,28d的生物降解率为96.24%。依据OECD对有机物生物降解试验的分级标准,单酯基季铵盐属于易生物降解有机物。  相似文献   

17.
用状态方程模拟注气对凝析气藏采收率的影响   总被引:3,自引:0,他引:3  
提高凝析油采收率和整体开发效益是凝析气藏开发的目标,注气是防止凝析出从面提高凝析油采收率的较好方法。以一个真实的凝析气藏为例,使用自行开发的PVTCOG软件和PR状态方程研究和对比了凝析气藏定容衰竭不同阶段,注干气、氮气及二氧化碳对露点的影响、对注气时机、对凝析油储量和凝析油采收率的影响。研究表明不同注入气影响露点的趋势不同,随注入气增加凝析油储量下降,但凝析油采收率上升,注入时机不一定是在于高于露点压力时最好。  相似文献   

18.
东胜气田超临界CO_2复合干法压裂技术试验   总被引:2,自引:0,他引:2  
为了在储层改造过程中形成大规模复杂缝网,沟通井筒周围及远端富集区,获得较高产能,在东胜气田开展了超临界CO_2复合干法压裂技术先导试验。试验取得了成功,验证了该工艺在东胜气田致密低渗储层改造中的适应性。  相似文献   

19.
天然气水合物具有储气率高、污染低、储量大等优点,具有良好的发展前景,但是在天然气加工和运输过程中形成的天然气水合物会造成管道堵塞等严重状况,因此,分析和预测天然气水合物的生成具有实际意义。为了预测天然气水合物的生成情况,针对前人研究天然气水合物生成预测方法的优缺点,引用了具有解决复杂系统问题能力的人工神经网络,运用MATLAB语言编程建立了灰色理论(Grey Forecast)理论和BP神经网络(Back Propagation Network, BP)的组合模型。为了提高预测精度,选用了差值结合法将两种方法结合,分别运用GM(1,1)、BP神经网络以及此组合模型对实验中得到的压力数据进行预测并加以比较;为了进一步验证组合模型的精准度,选用了马尔科夫链模型进行预测检验。结果表明,GM(1,1)和BP神经网络组合模型具有较高的精准度,且此方法可以广泛运用到较多方向,可为今后的天然气水合物开发利用提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号