首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
为了研究纳米多层膜的耐腐蚀性能以及腐蚀磨损机理,采用离子源辅助磁控溅射在TC4钛合金表面制备不同调制周期的CrSiN/SiN纳米多层膜。使用扫描电子显微电镜、能谱仪表征涂层的微观结构、腐蚀形貌以及元素分布;使用划痕仪、纳米压痕仪、维氏硬度计测量涂层的膜基结合力、硬度、弹性模量及断裂韧性,采用电化学工作站以及销盘磨损仪测量涂层耐腐蚀性和腐蚀磨损性。结果表明:调制周期为90 nm与360 nm时涂层耐腐蚀性能较好,腐蚀电流密度分别为1.31×10~(-8)A·cm~(-2)和1.20×10~(-8)A·cm~(-2)。此外,调制周期为45nm时,涂层硬度及弹性模量最大,分别为(22.5±0.6)GPa和(226.4±6.3)GPa,且腐蚀磨损率最低,为9.67×10~(-7)mm~3·N~(-1)·m~(-1)。多层膜结构显著改善了TC4钛合金的耐腐蚀及腐蚀磨损性能。  相似文献   

2.
采用超音速火焰喷涂技术(HVOF)在高强钢表面制备了316L不锈钢涂层,利用扫描电镜、显微硬度仪、电化学测试系统等设备对涂层金相组织、硬度、结合性能和抗腐蚀性能等进行了测试,并分析了WC-CoCr中间层对316L不锈钢粉末涂层结合强度及涂层界面的影响。结果表明:超音速火焰喷涂316L不锈钢粉末颗粒在喷涂中变形充分,形成较致密的涂层,并具有超过400 HV0.1的显微硬度;涂层具有较高自腐蚀电位,耐蚀性优于高强钢;涂层结合强度随着涂层厚度的减小、基体硬度的增加而提高;WC-CoCr底层可改善涂层界面结合,从而改善316L不锈钢涂层的结合性能。  相似文献   

3.
为改善316L不锈钢在海洋环境下的耐腐蚀性能,通过MnSi2增强316L不锈钢基体,采用选区激光熔化(SLM)制备MnSi2/316L不锈钢复合材料。利用Image-Pro Plus软件、光学显微镜、扫描电镜(SEM)及电化学工作站研究了激光功率对316L不锈钢金属基复合材料致密度及耐腐蚀性能的影响,通过Tafel极化曲线和阻抗谱表征其耐腐蚀性能的强弱,并通过点蚀形貌揭示了其腐蚀机理。结果表明:添加MnSi2是提高316L不锈钢耐腐蚀性能的有效途径。随着激光功率的增大,耐腐蚀性能呈现先提高后降低的趋势,当激光功率达到190 W时,2%MnSi2/316L不锈钢复合材料的致密度为99.80%,其腐蚀电位为-0.053 V (vs SCE)。同时,2%MnSi2可以显著改善316L不锈钢的成形质量,提高其耐腐蚀性能,其腐蚀形式为氯离子诱导氯化物生成的点蚀,且点蚀产生位置主要集中在孔隙边界处。  相似文献   

4.
为改善316L不锈钢在体液中的生物相容性,采用双辉等离子体表面合金化技术在其表面制备了Ta涂层,并使用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)对Ta涂层的形貌、成分分布和物相结构进行分析,借助划痕仪、往复摩擦磨损试验机和电化学工作站对涂层的结合强度、磷酸盐缓冲溶液(PBS)中的耐磨性及耐蚀性进行研究。结果表明:所制备的Ta涂层由厚度均为2μm左右的沉积层和扩散层组成,主要物相为α-Ta,涂层与基体的结合强度良好,发生破裂的临界载荷达到111 N。Ta涂层的比磨损率仅为基体的12.5%,自腐蚀电位比基体提高234 mV,腐蚀电流密度则降低2个数量级,磨损前后涂层样品的腐蚀速率分别为基体的1.9%和3.6%。表明Ta涂层能显著提升316L不锈钢在PBS溶液中的耐磨性和耐蚀性。  相似文献   

5.
煤油流量对HVOF铁基非晶涂层组织与性能的影响   总被引:1,自引:0,他引:1  
以工业原材料制备的FeCoCrMoCBY非晶粉末为喷涂材料,采用超音速火焰喷涂(HVOF)制备铁基非晶合金涂层。通过X射线衍射仪(XRD)、差示扫描热仪(DSC)、扫描电子显微镜(SEM)、维氏显微硬度计等测试方法,探讨煤油流量对涂层显微组织、微观结构及显微硬度的影响,并分析涂层与316 L不锈钢在1 mol/L HCl溶液中的动态极化特征。结果表明:涂层与基体结合良好,呈现典型的层状结构,非晶含量高,表现出比316 L不锈钢更高的耐腐蚀性能。其它参数一定时,煤油流量越高,涂层致密度越高,非晶含量先增多后减少,显微硬度先增大后减小;当氧气流量为50 m~3/L,煤油流量为26 L/h时,涂层非晶含量最高,为99.4%,孔隙率为1.51%,自腐蚀电流密度低,为5.62×10~(-6) A/cm~2,自腐蚀电位为-0.36 V,耐腐蚀性能表现最佳。  相似文献   

6.
Zr掺杂类金刚石薄膜摩擦性能及耐腐蚀性能的影响   总被引:1,自引:1,他引:0  
目的改善不锈钢摩擦性能及耐腐蚀性能。方法通过线性阳极层离子源辅助非平衡磁控溅射法,制备了不同Zr含量的类金刚石(DLC)薄膜,采用扫描电子显微镜、拉曼光谱仪、纳米硬度仪、高温销盘磨损仪、电化学工作站,对薄膜的化学成分、显微结构、纳米硬度、薄膜摩擦性能及耐腐蚀性能进行测试研究。结果随着Zr靶功率的增大,Zr含量线性增加。Zr含量从4.9%增加至16.3%时,I_D/I_G增大,薄膜硬度从12.1 GPa逐渐下降至8.4 GPa;Zr含量增大至21.2%时,I_D/I_G减小,薄膜硬度增大至11.4 GPa。涂镀类金刚石薄膜的不锈钢基体比无涂层的不锈钢基体有更低的摩擦系数,更好的耐磨损性能。Zr掺杂DLC薄膜的最小摩擦系数为0.07。Zr含量从4.9%增加至16.3%,DLC薄膜的耐腐蚀性能减弱;Zr含量继续增加,DLC薄膜的耐腐蚀性能增强。当Zr含量不大于11.9%时,沉积Zr掺杂DLC膜的不锈钢基体的耐腐蚀性能比不锈钢基体的更强。结论 Zr含量不大于11.9%时,Zr掺杂类金刚石薄膜既可以有效地改善不锈钢基体的摩擦磨损性能,又可以大幅提高耐腐蚀性能。  相似文献   

7.
采用失重分析,扫描电镜(SEM),能谱分析(EDS),电化学阻抗谱(EIS)和动电位极化实验(DP)等方法研究稀土元素Ce对316L不锈钢在3.5%(质量分数) NaCl腐蚀环境中耐腐蚀性能的影响。结果表明,添加适量的稀土元素Ce可有效减小316L不锈钢在3.5%NaCl溶液中的重量损失,降低其腐蚀速率,减小腐蚀表面点蚀坑的尺寸与数量,提高316L不锈钢在3.5%NaCl溶液中的腐蚀电位,降低其腐蚀电流密度,增大容抗弧半径,提高耐蚀性能。因此,本文确定提高316L不锈钢在3.5%NaCl溶液中耐腐蚀性能的最佳稀土元素Ce含量为0.015%(质量分数),并进一步揭示了Ce改善316L不锈钢耐腐蚀性能的主要原因:Ce可有效降低有害元素S在晶界处偏聚,净化晶界;改善夹杂物的形貌,减小夹杂物的尺寸。  相似文献   

8.
目的 通过多界面结构CrN/CrAlN涂层来提高316不锈钢在海水中的耐腐蚀磨损性能.方法 采用多弧离子镀技术在316不锈钢基底表面制备CrAlN单层和CrN/CrAlN多层涂层.利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射仪(XRD)等设备表征涂层的微观结构和相组成;借助纳米压痕仪及划痕仪分别测...  相似文献   

9.
采用磁控溅射方法在Ti6Al4V钛合金表面制备纳米晶TiN梯度涂层,研究涂层的显微组织和力学性能,并对涂层和Ti6Al4V合金基体在生理环境中的电化学腐蚀行为和腐蚀磨损性能进行比较。结果表明:纳米晶TiN的梯度分布有利于释放涂层中的内应力,使粘附强度增加到90 N。致密的结构和细化的晶粒使涂层表面纳米硬度达到28.5 GPa,纳米晶TiN涂层的防腐蚀效率达到96.6%。与Ti6Al4V合金基体相比,纳米晶TiN涂层的耐腐蚀磨损性能提高了100倍。纳米晶TiN梯度涂层具有良好的化学稳定性和较高的H~3/E~2比(H为硬度,E为弹性模量),是改善耐腐蚀性能和抗磨损性能的主要原因。  相似文献   

10.
硅烷涂层对316L不锈钢耐腐蚀性能的影响   总被引:1,自引:1,他引:0  
目的提高316L不锈钢的耐腐蚀性能。方法在316L不锈钢样品表面涂覆主要成分为1,2-二(三乙氧基硅基)乙烷(BTSE)的硅烷涂层。通过电化学分析测试,评价涂覆硅烷涂层的316L不锈钢的耐蚀性,并通过扫描电子显微镜和扫描电化学显微镜对其表面形貌进行分析。结果在相同的腐蚀环境下,与未涂覆硅烷涂层的316L不锈钢样品相比,涂覆硅烷涂层样品的表面更加光滑,点蚀现象明显好转。电化学测试结果显示,涂覆硅烷涂层的316L不锈钢样品的腐蚀电位为?565.02m V,未涂覆硅烷涂层样品的腐蚀电位为?796.01 mV,前者明显高于后者,其腐蚀倾向明显减小。另外,涂覆硅烷涂层的316L不锈钢样品的腐蚀电流为2.5177μA,未涂覆硅烷涂层样品的腐蚀电流为5.4291μA,涂覆硅烷涂层样品的腐蚀电流明显更小,表现出了更好的耐腐蚀性能。通过观察扫描电化学显微镜图像可以得出,未涂覆硅烷涂层的316L不锈钢样品的电流范围为?3.144×10?9~?1.957×10?9 A,涂覆硅烷涂层的316L不锈钢样品的电流范围为?3.004×10?9~?1.975×10?9A,涂覆硅烷涂层样品的电流范围更窄,腐蚀程度明显减轻。结论在316L不锈钢表面涂覆硅烷涂层可以在一定程度上减缓样品的腐蚀程度,硅烷涂层起到了物理屏障的作用,显着提高了316L不锈钢的耐腐蚀性。  相似文献   

11.
Coatings of zirconium oxide were deposited onto three types of stainless steel, AISI 316L, 2205, and tool steel AISI D2, using the ultrasonic spray pyrolysis method. The effect of the flux ratio on the process and its influence on the structure and morphology of the coatings were investigated. The coatings obtained, 600 nm thick, were characterized using x-ray diffraction, scanning electron microscopy, confocal microscopy, and atomic force microscopy. The resistance to corrosion of the coatings deposited over steel (not nitrided) and stainless steel nitrided (for 2 h at 823 K) in an ammonia atmosphere was evaluated. The zirconia coating enhances the stainless steel’s resistance to corrosion, with the greatest increase in corrosion resistance being observed for tool steel. When the deposition is performed on previously nitrided stainless steel, the morphology of the surface improves and the coating is more homogeneous, which leads to an improved corrosion resistance.  相似文献   

12.
To improve the marine corrosion resistance of stainless steel coatings fabricated by high-velocity oxyfuel (HVOF) spraying with a gas shroud attachment, the molybdenum (Mo) content of stainless steel was increased to form coatings with a chemical composition of Fe balance-18mass%Cr-22mass%Ni-2∼8mass%Mo. These coatings were highly dense, with <0.1 vol.% in porosity, and less oxidized, with 0.5 mass% in oxygen content at most. The corrosion mechanism and resistance of the coatings were investigated by electrochemical measurement, chemical analysis, and statistical processing. The general corrosion resistance of the coatings in 0.5 mol/dm3 sulfuric acid was improved with increases in Mo content, and the corrosion rate could be decreased to 8.8 × 10−2 mg/cm2 per hour (∼1 mm/year) at 8 mass% Mo. The pitting corrosion resistance of the coatings in artificial seawater was improved with increases in Mo content and was superior to that of the 316L stainless steel coating. The crevice corrosion resistance of the coatings in artificial seawater was improved and the number of rust spots at 4 mass% Mo was decreased to 38% of that for the 316L coating. Accordingly, Mo is highly effective in improving the corrosion resistance of the stainless steel coatings by HVOF spraying.  相似文献   

13.
张静  单磊  苏晓磊  李金龙  董敏鹏 《表面技术》2018,47(12):198-204
目的 讨论海水环境下不同基体材料对Cr/CrN交替的多层复合涂层磨蚀性能的影响,为海水环境下耐磨蚀材料基体的选择和应用提供参考。方法 采用多弧离子镀技术在316L不锈钢和TC4钛合金基体上沉积Cr/CrN多层复合涂层,通过XRD、SEM等技术对涂层材料的微观结构进行表征,通过硬度测试、结合力测试、电化学分析、摩擦磨损试验等技术对涂层材料的力学性能、电化学性能以及摩擦学性能进行分析,比较不同基体对Cr/CrN多层涂层在海水环境中磨蚀性能的影响。结果 以TC4钛合金为基体的Cr/CrN多层涂层的硬度为1727.2HV0.3,虽略小于以316L不锈钢为基体的涂层硬度(2241.5HV0.3),但其在膜-基结合力、海水环境下电化学性能和摩擦学性能等方面均优于以316L不锈钢为基体的涂层。结合力测试中,以TC4为基体的多层涂层初始裂纹出现在31 N,扩展裂纹出现在42 N,大于316L基体涂层的22 N和35 N。电化学测试中TC4基体涂层的腐蚀电位为?0.20 V,大于316L基体涂层的腐蚀电位(?0.21 V)。海水环境下TC4基体涂层的平均摩擦系数和磨损率分别为0.35和2.9950×10?5 mm3/(N?m),均小于316 L基体涂层的平均摩擦系数(0.36)和磨损率(4.9895×10?5 mm3/(N?m))。结论 TC4钛合金更适合作为海水环境用Cr/CrN多层涂层耐磨蚀材料的基体材料。  相似文献   

14.
The corrosion resistance of conducting polyaniline (PANi) coatings deposited on 316L stainless steel (316L SS) at various cycle numbers of cyclic voltammetry (2-, 3- and 4-cycles) by electro-polymerization in sulphuric acid solution containing fluoride was investigated by electrochemical techniques. The corrosion resistance of the 316L SS substrate was considerably improved by the PANi coating. The increase of the cycle number of cyclic voltammetry increased the thickness and enhanced the performance of the PANi coating due to low porosity.  相似文献   

15.
Anatase nanostructured coating has been prepared on 316 L stainless steel by sol-gel dip coating. The topography of the coatings surface has been analyzed using atomic force microscopy. The anticorrosion performance of the coatings has been evaluated using polarization curves. Effects of calcination temperature, withdrawal speed and times of coating on corrosion protection have been studied. The results showed calcination temperature of 400°C and withdrawal speed of 10 cm/min are desirable conditions to achieve high corrosion protection of 316 L stainless steel in chloride containing environments. Coatings with 3 times exhibit better resistance against corrosion in 0.5 molar NaCl solutions. This protection against corrosion arises from photocatalytic properties of anatase nanoparticles.  相似文献   

16.
316L powders were successfully deposited onto Al5052 aluminium substrates by cold spray method. Annealing was treated on the coated samples at 250–1000°C temperatures under Ar atmosphere. The in vitro performances of the coatings have been compared with using electrochemical corrosion test technique in the simulated body fluid (SBF) at body temperature (37°C). A scanning electron microscope (SEM-EDS) and X-ray diffraction (XRD) have been used for microstructural characterization and phases identifications of the coatings, respectively. The results were shown that there are high adhesions at particle and substrate interfaces and between the particles deposited as well. Also, the increasing annealing temperature increases corrosion resistance of the cold sprayed 316L stainless steel coatings. The corrosion susceptibility of the coating annealed at 1000°C was similar that of standard 316L stainless steel implant material in Ringer’s solution. The microstructural observations revealed that corrosion starts between the inter-splat powders and continues throughout the surface not in-depth.  相似文献   

17.
Three kinds of single layer coatings of Zn, Zn15Al, 316L stainless steel and two kinds of double layer coatings with inner layer of Zn or Zn15Al and outer layer of 316L stainless steel by arc spraying were developed to protect the metal ends of prestressed high-strength concrete (PHC) pipe piles against soil corrosion. The corrosion behaviors of the coated Q235 steel samples in the simulated Dagang soil solution were investigated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and natural immersion tests. The results show that the corrosion of the matrix Q235 steel is effectively inhibited by Zn, Zn15Al, Zn+316L and Zn15Al+316L coatings. The corrosion rate value of Zn15Al coated samples is negative. The corrosion products on Zn and Zn15Al coated samples are compact and firm. The corrosion resistance indexes of both Zn and Zn15Al coated samples are improved significantly with corrosion time, and the latter are more outstanding than the former. But the corrosion resistance of 316L coated samples is decreased quickly with the increase in immersion time. When the coatings are sealed with epoxy resin, the corrosion resistance of the coatings will be enhanced significantly.  相似文献   

18.
Pd–Ni coating shows good corrosion resistance in strong corrosion environments. However, in complex aggressive environments, the performance of the coatings is limited and further improvement is necessary. The effects of the applied plating current density on the composition, structure and properties of Pd–Ni coatings were studied. By changing the current density in the same bath, multi-layer Pd–Ni coatings were prepared on 316L stainless steel. Scanning electronic microscopy, weight loss tests, adhesion strength, porosity and electrochemical methods were used to study the corrosion resistance of the films prepared by different coating methods. Compared with the single layer Pd–Ni coating, the multi-layer coatings showed higher microhardness, lower internal stress, lower porosity and higher adhesive strength. The multi-layer Pd–Ni coating showed obviously better corrosion resistance in hot sulfuric acid solution containing Cl?.  相似文献   

19.
In this study, TiN and TiAlN coatings were deposited on AISI 316 L stainless steel substrates by PVD techniques. The composition and crystalline structure of the as-deposited coatings were analyzed by energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD) methods, respectively. The corrosion resistance studies of TiN-coated and TiAlN-coated samples were carried out in 0.9 wt % NaCl and SBF solutions using the electrochemical potentiodynamic polarization method and the wear behavior was evaluated with the ball-on-disk wear method at a sliding speed rate of 0.3 m/s under 2.5 N load in a dry medium. It was found that both TiN and TiAlN coatings exhibited relatively good corrosion resistance, however, TiAlN coatings showed a better corrosion resistance than TiN coatings. The TiAlN coating contributes positively against corrosion and wear behavior by increasing the surface hardness and by decreasing the friction coefficient of AISI 316 L stainless steel, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号