首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Investigations of tantalum coatings on steel by vacuum plasma spraying In this work the possibilities of the production of tantalum coatings by vacuum plasma spraying were investigated. Suitable parameters of the vacuum plasma spraying process were determined, and the quality of vacuum plasma sprayed tantalum coatings was evaluated with regard to chemical composition, adhesion strength, density and corrosion behaviour. To obtain high-quality coatings it was necessary to apply sufficient plasma power as well as an optimal injection of spraying powder into the plasma torch. A complete melting of the tantalum powder particles could not he achieved. The coatings obtained showed a good adhesion strength but a low formability (ductility). The corrosion resistance against HCL and HNO3 was evaluated by curves of the current density versus potential. With the aid of the passive current density it was determined that the corrosion resistance of the sprayed coatings was not as excellent as of compact tantalum. The increased surface roughness was not significant with respect to the corrosion behaviour. The reduced corrosion resistance could be caused probably by a high oxygen content of the tantalum powder, especially by oxides around individual powder particles. In contrast to tantalum, vacuum plasma sprayed titanium coatings showed the same corrosion resistance as compact titanium under the same testing conditions.  相似文献   

2.
Corrosion Properties of Cold-Sprayed Tantalum Coatings   总被引:2,自引:0,他引:2  
Cold spraying enables the production of pure and dense metallic coatings. Denseness (impermeability) plays an important role in the corrosion resistance of coatings, and good corrosion resistance is based on the formation of a protective oxide layer in case of passivating metals and metal alloys. The aim of this study was to investigate the microstructural details, denseness, and corrosion resistance of two cold-sprayed tantalum coatings with a scanning electron microscope and corrosion tests. Polarization measurements were taken to gain information on the corrosion properties of the coatings in 3.5 wt.% NaCl and 40 wt.% H2SO4 solutions at room temperature and temperature of 80 °C. Standard and improved tantalum powders were tested with different spraying conditions. The cold-sprayed tantalum coating prepared from improved tantalum powder with advanced cold spray system showed excellent corrosion resistance: in microstructural analysis, it showed a uniformly dense microstructure, and, in addition, performed well in all corrosion tests.  相似文献   

3.
铝是一种应用十分广泛的耐腐蚀材料,热喷涂技术作为表面工程领域的重要技术之一,在钢铁材料表面喷涂铝涂层,能够对钢铁材料起到很好的耐腐蚀保护作用,延长钢铁的使用寿命,减少对钢材的维护与保养。目前通常采用火焰喷涂技术、电弧喷涂技术和冷喷涂技术制备铝涂层,对此三种热喷涂技术制备铝涂层的涂层特点和耐腐蚀性能进行综述。系统归纳了这三种热喷涂技术的热源温度、粒子飞行速度和喷涂距离对形成涂层特点的影响机制,以及铝涂层在3.5%NaCl溶液中的耐腐蚀机理,揭示出铝涂层内部孔隙是影响其耐腐蚀性能的最主要因素,孔隙含量可由孔隙率表示,并指出随着孔隙率的增大,其耐腐蚀性能降低。但是并未详细指出涂层内部孔隙的含量和形状大小对涂层耐腐蚀性能的影响,因此通过进一步优化热喷涂技术制备铝涂层的工艺,研究不同孔隙含量的铝涂层和不同形状大小孔隙的铝涂层在实际服役工况下的具体耐腐蚀程度,对今后热喷涂铝涂层的实际应用具有重要的科学意义,是今后的重点研究方向之一。  相似文献   

4.
利用离子束增强沉积技术在钛合金表面制备CrN硬质抗磨层和CuNiln固体润滑膜层。通过电化学测试技术对比研究了膜层和钛合金基材在含Cl介质中的抗蚀性能和接触腐蚀敏感性,利用高温静态氧化方法评价了膜层的抗氧化性能。结果表明:(1)CuNiln膜层耐电化学腐蚀性能和抗氧化性能显著优于Cu,在含Cl介质中与钛合金接触相容。(2)在含Cl水溶液中,CrN膜层耐蚀性好,与钛合金接触相容;在HCl HF混合酸中,CrN膜耐蚀性能远优于钛合金;抗氧化性能优于Ti。  相似文献   

5.
喷涂距离对超音速火焰喷涂 CoCrAlYTa 涂层组织性能的影响   总被引:6,自引:5,他引:1  
采用超音速火焰喷涂技术制备CoCrAlYTa涂层,研究了喷涂距离对涂层相组成、孔隙率以及硬度、弯曲强度、高温抗氧化性能的影响。结果表明:喷涂距离在200~300 mm范围内时,随着喷涂距离的减小,涂层的致密度增加,孔隙率下降,显微硬度和弯曲结合强度增加,但相组成基本不变,主要由CoAl,AlCo2Ta和CoTa3相组成;涂层致密度越高,在高温氧化过程中,表面越易尽早形成连续氧化膜并促进涂层中Al元素的选择氧化,因此随着喷涂距离的减小,涂层的高温抗氧化性能逐渐增强。  相似文献   

6.
A Fe-Cr-B-C coating was prepared by electric arc spraying process to prevent the boiler tubes from hot corrosion at elevated temperatures.A hot corrosion resistance test was conducted in a mixed molten salt of Na2SO4 and K2SO4(7:3)at 700 ℃for a total period of 156 h.The microstructure and phases of the coatings before and after exposed to the hot corrosion were investigated by scanning election microscopy(SEM),optical microscopy(OM)and X-ray diffraction(XRD).The hardness and porosity were analyzed.The hot corrosion behavior of the coatings was examined by the measurement of corrosion mass gain and the observation of corrosion morphology.The results show that some splats of particles are formed on flat substrate surfaces and the coatings have a dense typical layer structure of electric arc thermally spraying deposits.Some amorphous phase exist in the coating.The coatings have an excellent resistance to hot corrosion.The formation of oxides of chromium on the exposed surface may be contributing better resistance to hot corrosion.The corrosion of the coatings follows the oxidation and sulfidation mechanism.  相似文献   

7.
有色金属涂层及其封闭层的海水腐蚀性能   总被引:8,自引:0,他引:8  
介绍了金属涂层、金属涂层+封闭层等9种涂装体系在 国内三个站静海全浸、潮差、飞溅区海水腐蚀性能的研究.结果表明:Al 、Zn涂层及Zn-Al涂层+封闭层、Al涂层+842+546环氧沥青漆复合涂装体系具有良好的 防护效果.试验分析表明:涂层防护效果主要与材料在海水中的电极电位、涂层孔隙率以及材料性能密切相关.  相似文献   

8.
In this investigation, coatings of titanium composites containing in situ synthesized carbides or nitrides were deposited by reactive plasma spraying. Titanium powders were used as starting powder materials. Methane and nitrogen were used as reactive gases. Microstructural analyses revealed that titanium carbides and nitrides were synthesized during spraying. The coatings show high sliding wear resistance and good corrosion performance.  相似文献   

9.
等离子喷涂氧化铝基复合涂层研究进展   总被引:1,自引:1,他引:0  
随着等离子喷涂技术的发展,等离子喷涂氧化铝基复合涂层在防腐蚀、耐磨损和航天航空等领域得到了广泛应用。首先简要介绍了新型等离子喷涂技术(激光等离子喷涂、悬浮液等离子喷涂和超音速等离子等)和主要喷涂工艺参数(喷涂功率、送粉方式和喷涂距离等),然后从改善涂层耐腐蚀性能的角度出发,阐述了第二相、喷涂工艺参数和后处理工艺对涂层气孔率的影响及与涂层耐腐蚀性能的关系。重点分析了硬度、喂料特征和激光熔覆技术对氧化铝基复合涂层耐磨损性能的影响,详述了影响硬度的因素,以及喷涂粉末特征和激光熔覆处理对复合涂层微观结构的影响。在电磁波吸收性能研究方面,论述了吸收剂含量、涂层厚度和多种电磁波吸收剂匹配以及喷涂参数的调整对等离子喷涂氧化铝基复合涂层吸波性能的影响。最后对以等离子喷涂技术制备性能更加优异的氧化铝基复合涂层提出了展望。  相似文献   

10.
等离子喷涂技术在工业上得到越来越广泛的应用,但涂层的高孔隙率阻碍了该技术在耐腐蚀产品中的应用。采用环氧树脂和有机硅透明树脂剂两种封孔剂对等离子喷涂Cr_2O_3-8TiO_2涂层进行封孔试验,对环氧树脂采用常规和真空两种封孔工艺。用电化学和盐雾腐蚀试验比较了封孔和未封孔涂层的耐腐蚀性能,用扫描电镜(SEM)光学显微镜(OM)观察了腐蚀前后涂层的截面形貌。结果表明,封孔涂层的耐腐蚀性明显优于未封孔涂层。未封孔涂层在盐雾腐蚀240h后出现裂纹并发生剥落。  相似文献   

11.
赵卫民  王勇  吴开源  薛锦 《中国焊接》2003,12(2):146-151
The corrosion resistance of NiCrBSi coating deposited on steel substrate by HVOF was examined using electrochemical tests and immersion tests so as to offer an experimental basis to expand a promising applied field of HVOF in aqueous medium, comparing with those of coatings deposited by oxyacetylene flame spraying and flame cladding. The results show that the general corrosion rate of HVOF sprayed coatings is quite bigger than that of clad coatings, bat it is less sensitive to local corrosion. There is less and smaller porosity in the coatings deposited by HVOF than that in flame sprayed coatinlgs. The effects of porosity on the corrosion current density was indistinctive, bat the existence of large amount of defects in the coatings damaged the cohesion of the coatings, causing the metallic particles drop off from the coatings under the influence of corrosive medium. Improving the quality and reducing the porosity of coatings is the key to get the coatings with high corrosion resistance.  相似文献   

12.
TiAl合金表面激光重熔MCrAlY涂层热腐蚀性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用等离子喷涂技术在TiAl合金表面制备了MCrAlY涂层,并用激光重熔工艺对涂层进行处理,研究了TiAl合金、等离子喷涂MCrAlY涂层及激光重熔MCrAlY涂层850℃下75%Na2SO4+25%NaCl(质量分数)混合盐浸泡热腐蚀性能,分析了不同试样的热腐蚀破坏机理,并讨论了激光重熔处理对涂层热腐蚀性能的影响.结果表明,等离子喷涂MCrAlY涂层能显著提高TiAl合金的耐热腐蚀性能,经过激光重熔后可进一步提高其耐热腐蚀性能.MCrAlY涂层在高温熔盐中的热腐蚀发生的是表面氧化反应和内部硫化反应,主要生成Al2O3,Cr2O3,NiO,NiCr2O4,Ni3S2及CrS等腐蚀产物.  相似文献   

13.
WC-10Co-4Cr cermet coatings were deposited on the substrate of AISI 1045 steel by using high-velocity oxygen-fuel (HVOF) thermal spraying process. The Taguchi method including the signal-to-noise (S/N) ratio and the analysis of variance (ANOVA) was employed to optimize the porosity and, in turn, the corrosion resistance of the coatings. The spray parameters evaluated in this study were spray distance, oxygen flow, and kerosene flow. The results indicated that the important sequence of spray parameters on the porosity of the coatings was spray distance > oxygen flow > kerosene flow, and the spray distance was the only significant factor. The optimum spraying condition was 300 mm for the spray distance, 1900 scfh for the oxygen flow, and 6.0 gph for the kerosene flow. The results showed the significant influence of the microstructure on the corrosion resistance of the coatings. Potentiodynamic polarization and electrochemical impendence spectroscopy (EIS) results showed that the WC-10Co-4Cr cermet coating obtained by the optimum spraying condition with the lowest porosity exhibits the best corrosion resistance and seems to be an alternative to hard chromium coating.  相似文献   

14.
铝合金表面电弧喷涂铝涂层工艺与性能   总被引:3,自引:0,他引:3       下载免费PDF全文
徐荣正  宋刚  刘黎明 《焊接学报》2008,29(6):109-112
采用电弧喷涂工艺在6061铝合金基体表面喷涂高纯铝涂层,利用金相显微镜对涂层的组织进行观察,分析了基体与涂层的结合方式,测量了涂层的孔隙率.并采用质量分数为5%的NaCl溶液浸泡试验、盐雾试验和电化学试验,检验了涂层的耐腐蚀性.结果表明,利用电弧喷涂技术可以在6061铝合金基体表面形成均匀、致密、孔隙率低、结合良好的高纯铝涂层;高纯铝涂层耐腐蚀性较好,对铝合金基体起到了保护作用,涂层经过封孔工艺处理后保护作用更好.  相似文献   

15.
超音速电弧喷涂铝涂层的耐蚀特性   总被引:2,自引:0,他引:2  
采用光学显微镜、电子扫描显微镜研究了超音速电弧喷涂铝涂层的显微组织结构的及喷涂粒了状态;采用拉伸试验和硬度计测试了涂层结合强度、三度,采用中性盐雾试验对铝涂 耐腐蚀性进行实验,结果表明超音束电弧喷涂铝涂层孔隙率低、组织致密,结合强度和硬芳较高、耐腐蚀性能优越,铝、Ac铝俣金涂层的耐腐蚀性能几乎相同。  相似文献   

16.
LY12铝合金表面喷射式微弧氧化工艺研究   总被引:2,自引:0,他引:2  
采用小型微弧氧化电源装置和新颖的喷射式阴极,解决传统的浸入式微弧氧化工艺不能用于外场大面积构件局部修复用涂层制备的问题。采用XRD、SEM、EDS等分析手段研究涂层的物相与组织结构。用动电位极化法及盐雾腐蚀试验评价涂层的抗腐蚀性能。结果表明,相同电参数条件下,喷射式微弧氧化电流密度略高于浸入式氧化,生长的涂层厚度稍低于浸入式氧化,喷射式与浸入式微弧氧化涂层生长规律一致。涂层主要由α-Al2O3和γ-Al2O3组成,涂层内层致密,表面多微孔。TAFEL极化曲线与盐雾腐蚀测试均表明,微弧氧化涂层明显改善LY12铝合金抗腐蚀性能。  相似文献   

17.
微弧氧化技术可以实现对金属表面的高耐蚀、耐磨等改性,传统微弧氧化所得陶瓷膜具有多孔结构,影响了其耐蚀性能及高温氧化性能。本文针对氧化膜多孔结构与腐蚀性能之间的关系开展基础研究。采用外加电场微弧氧化技术实现自封闭孔结构,并研究了不同孔结构膜层的耐蚀性能;讨论了封孔过程中胶体运动-电位-孔结构表征之间的规律性关系,评价了自封孔后膜层腐蚀性能。主要研究结果表明:膜层中的多孔结构是腐蚀介质的通道,自封孔后耐蚀性能提高,此外,耐蚀性与孔隙率及封孔填充物的成分和形态具有极大的相关性,通过调整外加电场强度和时间可以实现对自封孔的调控,从而改善耐蚀性能。  相似文献   

18.
在中温平板型固体氧化物燃料电池(ITSOFC)设计中,可以采用金属作为连接材料.Fe-16Cr合金是较为理想的金属连接材料,它存在的主要问题是连接体阴极侧表面的高温氧化和腐蚀,会导致电池性能的迅速降低.本研究采用空气等离子喷涂的方法喷涂了La0.8Sr0.2MnO3-σ(LSM)钙钛矿型保护涂层在金属连接板的表面,并讨论了主要过程参数及其作用效果.研究发现,喷涂后热处理是降低涂层孔隙率的有效方法,经喷涂-热处理后,涂层的孔隙率可降至1%以下.等离子喷涂LSM保护涂层后,Fe-16Cr合金的耐高温氧化性能明显提高,氧化速率降低了76%.  相似文献   

19.
Cold gas dynamic spraying can be used to deposit oxygen-sensitive materials, such as titanium, without significant chemical degradation of the powder. The process is thus believed to have potential for the deposition of corrosion-resistant barrier coatings. However, to be effective, a barrier coating must not allow ingress of a corrosive liquid and hence must not have interconnected porosity. This study investigated the effects of porosity on the corrosion behavior of cold sprayed titanium coatings onto carbon steel and also of free standing deposits. For comparative purposes, a set of free standing deposits was also vacuum heat-treated to further decrease porosity levels below those in the as-sprayed condition. Microstructures were examined by optical and scanning electron microscopy. Mercury intrusion porosimetry (MIP) was used to characterize the interconnected porosity over a size range of micrometers to nanometers. Open circuit potential (OCP) measurements and potentiodynamic polarization scans in 3.5?wt.% NaCl were used to evaluate the corrosion performance. The MIP results showed that in cold sprayed deposits a significant proportion of the porosity was sub-micron and so could not be reliably measured by optical microscope based image analysis. In the case of free standing deposits, a reduction in interconnected porosity resulted in a lower corrosion current density, a lower passive current density, and an increase in OCP closer to that of bulk titanium. For the lowest porosity level, ~1.8% achieved following vacuum heat treatment, the passive current density was identical to that of bulk titanium. However, electrochemical measurements of the coatings showed significant substrate influence when the interconnected porosity of the coating was 11.3?vol.% but a decreased substrate influence with a porosity level of 5.9?vol.%. In the latter case, the OCP was still around 250?mV below that of bulk Ti. Salt spray tests confirmed these electrochemical findings and showed the formation of surface corrosion products following 24-h exposure.  相似文献   

20.
Thermally sprayed alumina coatings are widely used in a range of industrial applications to improve wear and erosion resistance, corrosion protection and thermal insulation of metallic surfaces. These properties are required for many components to be used for production processes in the paper and printing industry.Another appropriate method to produce ceramic coatings is the plasma electrolytic oxidation (PEO). However PEO can only be applied on self-passivating metals like aluminium, titanium, magnesium and their alloys. The present paper concerns a combination of cost-efficient arc spraying and flame spraying of Al coatings (Al99.5, AlCu4Mg1) on steel substrates and post-treatment by plasma-electrolytic oxidation (PEO). The microstructure and phase composition of generated oxide coatings are examined and discussed. The created Al2O3 layers show outstanding hardness up to 1600 HV0.1, good bonding strength and excellent abrasion resistance compared to atmospheric plasma-sprayed Al2O3-coatings. The results show the superior performance of PEO-coatings and demonstrate their applicability for technical components in extreme operating conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号