首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In this paper, fuel-processing technologies are developed for application in residential power generation (RPG) in solid oxide fuel cells (SOFCs). Kerosene is selected as the fuel because of its high hydrogen density and because of the established infrastructure that already exists in South Korea. A kerosene fuel processor with two different reaction stages, autothermal reforming (ATR) and adsorptive desulfurization reactions, is developed for SOFC operations. ATR is suited to the reforming of liquid hydrocarbon fuels because oxygen-aided reactions can break the aromatics in the fuel and steam can suppress carbon deposition during the reforming reaction. ATR can also be implemented as a self-sustaining reactor due to the exothermicity of the reaction. The kWe self-sustained kerosene fuel processor, including the desulfurizer, operates for about 250 h in this study. This fuel processor does not require a heat exchanger between the ATR reactor and the desulfurizer or electric equipment for heat supply and fuel or water vaporization because a suitable temperature of the ATR reformate is reached for H2S adsorption on the ZnO catalyst beds in desulfurizer. Although the CH4 concentration in the reformate gas of the fuel processor is higher due to the lower temperature of ATR tail gas, SOFCs can directly use CH4 as a fuel with the addition of sufficient steam feeds (H2O/CH4 ≥ 1.5), in contrast to low-temperature fuel cells. The reforming efficiency of the fuel processor is about 60%, and the desulfurizer removed H2S to a sufficient level to allow for the operation of SOFCs.  相似文献   

2.
Thermodynamic analysis of hydrogen production from propanol reforming reactions, by decomposition and steam reforming, in presence of hydrazine was evaluated as a function of temperature (300–900 K) at a constant pressure of 1 atm. The molar ratio of reactants were varied to identify the conditions leading to hydrogen rich product stream with low carbon formation. Steam reforming of propanol displayed higher hydrogen production and a gradual decrease in carbon content with an increase in the steam/propanol ratio. Addition of hydrazine leads to a further enhancement in hydrogen amount along with a suppression in coking. A similar trend was observed in case of propanol decomposition reaction. Addition of hydrazine leads to a favorable condition for hydrogen production along with a decrease in carbon formation. In both, steam reforming and decomposition, methane and water seem to be the stable products at low temperature, which react together at elevated temperatures following steam reforming of methane to generate CO and hydrogen. Hydrazine, on the other hand diminishes carbon at low temperature and produces ammonia, which decomposes at higher temperature to generate hydrogen and nitrogen. It is clear that steam assists in eliminating carbon at higher temperature whereas hydrazine is helpful in removing carbon formation at lower temperature. Also, a considerably high ratio of H2/CO can be maintained in both the reactions, propanol steam reforming and propanol decomposition, by introducing a hydrazine stream in the feed.  相似文献   

3.
This study uses a life cycle costing (LCC) methodology to identify when hydrogen can become economically feasible compared to the conventional fuels and which energy policy is the most effective at fostering the penetration of hydrogen in the competitive fuel market. The target hydrogen pathways in this study are H2 via natural gas steam reforming (NG SR), H2 via naphtha steam reforming (Naphtha SR), H2 via liquefied petroleum gas steam reforming (LPG SR), and H2 via water electrolysis (WE). In addition, the conventional fuels (gasoline, diesel) are also included for the comparison with the H2 pathways.  相似文献   

4.
This study aims to provide a comprehensive environmental life cycle assessment of heat and power production through solid oxide fuel cells (SOFCs) fueled by various chemical feeds namely; natural gas, hydrogen, ammonia and methanol. The life cycle assessment (LCA) includes the complete phases from raw material extraction or chemical fuel synthesis to consumption in the electrochemical reaction as a cradle-to-grave approach. The LCA study is performed using GaBi software, where the selected impact assessment methodology is ReCiPe 1.08. The selected environmental impact categories are climate change, fossil depletion, human toxicity, water depletion, particulate matter formation, and photochemical oxidant formation. The production pathways of the feed gases are selected based on the mature technologies as well as emerging water electrolysis via wind electricity. Natural gas is extracted from the wells and processed in the processing plant to be fed to SOFC. Hydrogen is generated by steam methane reforming method using the natural gas in the plant. Methanol is also produced by steam methane reforming and methanol synthesis reaction. Ammonia is synthesized using the hydrogen obtained from steam methane reforming and combined with nitrogen from air in a Haber-Bosch plant. Both hydrogen and ammonia are also produced via wind energy-driven decentralized electrolysis in order to emphasize the cleaner fuel production. The results of this study show that feeding SOFC systems with carbon-free fuels eliminates the greenhouse gas emissions during operation, however additional steps required for natural gas to hydrogen, ammonia and methanol conversion, make the complete process more environmentally problematic. However, if hydrogen and ammonia are produced from renewable sources such as wind-based electricity, the environmental impacts reduce significantly, yielding about 0.05 and 0.16 kg CO2 eq., respectively, per kWh electricity generation from SOFC.  相似文献   

5.
The article explores the thermodynamics of an alternate hydrogen generation process - dry autothermal reforming and its comparison to autothermal reforming process of isooctane for use in gasoline fuel processors for SOFC. A thermodynamic analysis of isooctane as feed hydrocarbon for autothermal reforming and dry autothermal reforming processes for feed OCIR (oxygen to carbon in isooctane ratio) from 0.5 to 0.7 at 1 bar pressure under analogous thermoneutral operating conditions was done using Gibbs free energy minimization algorithm in HSC Chemistry. The trends in thermoneutral points (TNP), important product gas compositions at TNPs and fuel processor energy requirements were compared and analyzed. Dry autothermal reforming was identified as a less energy consuming alternative to autothermal reforming as the syngas can be produced with lower energy requirements at thermoneutral temperatures, making it a promising candidate for use in gasoline fuel processors to power the solid oxide fuel cells. The dry autothermal reforming process for syngas production can also be used for different fuels.  相似文献   

6.
Theoretical study of fuel gas (H2 + CO) production for SOFC from bioethanol was carried out to compare performances between two reforming technologies, including steam reforming (SR) and supercritical-water reforming (SCWR). It demonstrates that the fuel gas productions are comparable among the two reforming systems; however, SCWR requires the operation at much higher temperature and pressure than SR. The maximum hydrogen yield can be obtained at 850 K, atmospheric pressure, ethanol to water molar feed ratio of 1:20 for SR system and at 1300 K, 22.1 MPa, and ethanol to water feed ratio of 1:20 for SCWR. The use of a distillation column to purify the bioethanol feed was proven to improve the fuel conversion efficiency of both systems. The analysis reveals that SCWR is a promising system for fuel production for SOFC when a gas turbine is incorporated to the system for energy recovery. Further, it is not necessary to distil bioethanol to obtain too high ethanol recovery (i.e. >90%) as higher energy consumption at the distillation column could lead to lower overall thermal efficiency.  相似文献   

7.
The distributed power generation of methanol steam reforming reactor combined with solid oxide fuel cell (SOFC) has the characteristics of outstanding economic advantages. In this paper, a methanol steam reforming reactor was designed which integrates catalyst combustion, vaporization and reforming. By catalyst combustion, it can achieve stable operation to supply fuel for kW-class SOFC in real time without additional heating equipment. The optimal operating condition of the reforming reactor is 523–553 K, and the steam to carbon ratio (S/C) is 1.2. To study the reforming performance, methanol steam reforming (MSR), methanol decomposition (MD), water-gas shift (WGS) were considered. Operating temperature is the greatest factor affecting reforming performance. The higher the reaction temperature, the lower the H2 and CO2, the higher the CO and the methanol conversion rate. The methanol conversion rate is up to 95.03%. The higher the liquid space velocity (LHSV), the lower the methanol conversion rate, the lowest is 90.7%. The temperature changes of the reforming reactor caused by the load change of stack takes about 30 min to reach new balance. Local hotspots within the reforming reactor lead to an excessive local temperature to test a small amount of CH4 in the reforming gas. The methanation reaction cannot be ignored at the operating temperature. The reforming gas contains 70–75% H2, 3–8% CO, 18–22% CO2 and 0.0004–0.3% CH4. Trace amounts of C2H6 and C2H4 are also found in some experiments. The reforming reactor can stably supply the fuel for up to 1125 W SOFC.  相似文献   

8.
In this paper we show, for the first time, the feasibility of ammonia exhaust gas reforming as a strategy for hydrogen production used in transportation. The application of the reforming process and the impact of the product on diesel combustion and emissions were evaluated. The research was started with an initial study of ammonia autothermal reforming (NH3 – ATR) that combined selective oxidation of ammonia (into nitrogen and water) and ammonia thermal decomposition over a ruthenium catalyst using air as the oxygen source. The air was later replaced by real diesel engine exhaust gas to provide the oxygen needed for the exothermic reactions to raise the temperature and promote the NH3 decomposition. The main parameters varied in the reforming experiments are O2/NH3 ratios, NH3 concentration in feed gas and gas – hourly – space – velocity (GHSV). The O2/NH3 ratio and NH3 concentration were the key factors that dominated both the hydrogen production and the reforming process efficiencies: by applying an O2/NH3 ratio ranged from 0.04 to 0.175, 2.5–3.2 l/min of gaseous H2 production was achieved using a fixed NH3 feed flow of 3 l/min. The reforming reactor products at different concentrations (H2 and unconverted NH3) were then added into a diesel engine intake. The addition of considerably small amount of carbon – free reformate, i.e. represented by 5% of primary diesel replacement, reduced quite effectively the engine carbon emissions including CO2, CO and total hydrocarbons.  相似文献   

9.
We investigate the utilization of anode exhaust gas from high temperature fuel cells as gasification or reforming agent in Solid Oxide Fuel Cell (SOFC) and Molten Carbonate Fuel Cell (MCFC) power plants. The minimal anodic recirculation ratio is determined by two approaches: based on stoichiometric considerations and using detailed modeling of all process units. In the latter case, the risk of carbon formation and system heat integration are considered. The results indicate that the stoichiometric approach can be used as a shortcut method only for the SOFC systems due to good agreements with the detailed calculations. Furthermore, the mass integration concept is a feasible option for a wide variety of fuels in SOFC plants thanks to their relatively high operating temperatures. In MCFC systems, significantly higher recycle ratios are required to suppress carbon deposition which makes this concept unattractive.  相似文献   

10.
Solid oxide fuel cells (SOFC) can utilize various fuels, such as natural gas, hydrogen and biogas, but often, it is sensible to use a pre‐reformer that converts the fuel into a hydrogen‐rich gas stream. Relevant testing conditions, including the fuel to be used in SOFC systems, are important because cell performance depends on test conditions, such as fuel composition. Still, a majority of the reported single‐cell and short stack tests are performed with pure hydrogen or synthetic reformate mixed from gas bottles. In this article, the development of a fuel feeder used to pre‐reform natural gas for a single cell SOFC test station is presented. To mimic SOFC system conditions, natural gas is taken from the grid, desulfurized with commercial sulfur sorbent and reformed with a commercial precious metal catalyst. The fuel feeder is designed to be a versatile and efficient research tool, capable to be used in a wide temperature and gas flow range and with different reforming techniques, such as steam reforming, catalytic partial oxidation and simulated anode off‐gas recycling. The construction, operation and characterization of the fuel feeder as well as methods of avoiding carbon formation are discussed. The performance is evaluated by comparing measured outlet temperatures and compositions against equilibrium values. All measured gas compositions matched closely with the calculated equilibrium values, and the identified deviations were small and to no harm in practical use. The operator can control the product gas composition by setting the fuel feeder heater to the temperature corresponding to the targeted composition. Results show that the fuel feeder design can be used as such for single‐cell testing or scaled to fit larger stack test stations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
《Journal of power sources》2006,154(2):503-508
The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell.For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems.The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor.This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.  相似文献   

12.
Biogas is a renewable biofuel that contains a lot of CH4 and CO2. Biogas can be used to produce heat and electric power while reducing CH4, one of greenhouse gas emissions. As a result, it has been getting increasing academic attention. There are some application ways of biogas; biogas can produce hydrogen to feed a fuel cell by reforming process. Urea is also a hydrogen carrier and could produce hydrogen by steam reforming. This study then employes steam reforming of biogas and compares hydrogen-rich syngas production and carbon dioxide with various methane concentrations using steam and aqueous urea solution (AUS) by Thermodynamic analysis. The results show that the utilization of AUS as a replacement for steam enriches the production of H2 and CO and has a slight CO2 rise compared with pure biogas steam reforming at a temperature higher than 800 °C. However, CO2 formation is less than the initial CO2 in biogas. At the reaction temperature of 700 °C, carbon formation does not occur in the reforming process for steam/biogas ratios higher than 2. These conditions led to the highest H2, CO production, and reforming efficiency (about 125%). The results can be used as operation data for systems that combine biogas reforming and applied to solid oxide fuel cell (SOFC), which usually operates between 700 °C to 900 °C to generate electric power in the future.  相似文献   

13.
The use of renewable biomass, such as ethylene glycol (EG), for hydrogen production offers a more sustainable system compared to natural gas and petroleum reforming. For the first time, the reaction thermodynamics of steam reforming and sorption enhanced steam reforming of EG have been investigated. Gibbs free energy minimization method was used to study the effect of pressure (1-5 atm), temperature (500-1100 K) and water to EG ratio (WER 0-8) on the production of hydrogen and the formation of associated by-products (CH4, CO2, CO, C). The results suggest that hydrogen production is optimum when steam reforming occurs at atmospheric pressure, 925 K and with a WER of 8. Moreover, working at high temperature (>900 K) and with a WER above 6 inhibits almost entirely the production of methane and carbon. The main source of hydrogen in the system is found to be steam reforming of methane and water gas shift reaction by the analysis of the response reactions (RERs). Hydrogen production is governed by the former reaction at low temperatures while the latter one comes into prominence as temperature increases. By coupling with in situ CO2 capture using CaO, the formation of CO2 and CO can be avoided and high purity of hydrogen (>99%) can be achieved.  相似文献   

14.
The hydrogasification of Refuse Derived Fuel (RDF) consisting of non-recyclable plastic polymers was combined with methane steam reforming in a “hydrogen self-sustained” loop configuration. The hydrogasification unit fed by 1000 kg/h of RDF was initially modeled by Aspen plus to define best operating conditions, namely temperature, pressure and hydrogen feed flow rate. After the simulations, the temperature of the hydrogasification process has been fixed at 300 °C, the pressure at 10 bar and the hydrogen feed flow rate at 140 kg/h. The steam reforming unit operates at 850 °C while the water-gas shift is conducted at 350 °C. When all the methane produced by hydrogasification is used to feed the steam reformer, which yields H2 that is recycled back to the hydrogasifier, the net hydrogen production is 222 kg/h with an amount of CO2 released of 2265 kg/h. For the different process configurations adopted, the energy efficiency of the process ranges 84–89%.  相似文献   

15.
There is increasing interest in developing solid oxide fuel cells (SOFC) for portable applications. For these devices it would be convenient to directly use a liquid fuel such as methanol and ethanol rather than hydrogen. The direct utilization of alcohol fuels in SOFC involves several processes, including the deposition of carbon, which can lead to irreversible deactivation of the fuel cell. Several publications have addressed the thermodynamic analysis of the reforming of methanol (MeOH) and ethanol (EtOH) in SOFC, but none have considered the direct utilization of these fuels. The equilibrium compositions, the carbon deposition boundaries, and the electromotive forces for the direct utilization and partial oxidation of methanol and ethanol in SOFC as a function of the fuel utilization are obtained in this study. In addition, the minimum amounts of H2O, and CO2 for direct and indirect reforming with MeOH and EtOH to avoid carbon formation are calculated.  相似文献   

16.
One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. Continuous separation of product hydrogen from the reforming gas mixture is expected to increase the yield of hydrogen significantly as predicted by model simulations. In the laboratory-scale experimental studies reported here steam reforming of liquid hydrocarbon fuels, butane, methanol and Clearlite® was conducted to produce pure hydrogen in a single step membrane reformer using commercially available Pd–Ag foil membranes and reforming/WGS catalysts. All of the experimental results demonstrated increase in hydrocarbon conversion due to hydrogen separation when compared with the hydrocarbon conversion without any hydrogen separation. Increase in hydrogen recovery was also shown to result in corresponding increase in hydrocarbon conversion in these studies demonstrating the basic concept. The experiments also provided insight into the effect of individual variables such as pressure, temperature, gas space velocity, and steam to carbon ratio. Steam reforming of butane was found to be limited by reaction kinetics for the experimental conditions used: catalysts used, average gas space velocity, and the reactor characteristics of surface area to volume ratio. Steam reforming of methanol in the presence of only WGS catalyst on the other hand indicated that the membrane reactor performance was limited by membrane permeation, especially at lower temperatures and lower feed pressures due to slower reconstitution of CO and H2 into methane thus maintaining high hydrogen partial pressures in the reacting gas mixture. The limited amount of data collected with steam reforming of Clearlite® indicated very good match between theoretical predictions and experimental results indicating that the underlying assumption of the simple model of conversion of hydrocarbons to CO and H2 followed by equilibrium reconstitution to methane appears to be reasonable one.  相似文献   

17.
Catalytic and technological aspects in the use of bio-ethanol as fuel to produce hydrogen in both internal (IR-MCFC) and indirect internal reforming (IIR-MCFC) configurations have been considered. In MCFC conditions, even operating at total ethanol conversion, hydrogen productivity depends on the catalyst efficiency to convert methane formed through a mechanism, which foresees as first step the dehydrogenation of ethanol to acetaldehyde and as a second step the decomposition of acetaldehyde to CO and CH4. Potassium doped Ni/MgO, Ni/La2O3 and Rh/MgO resulted to be the most promising catalysts to be used for the hydrogen production by steam reforming of bio-ethanol. Coke formation represents a serious problem, however, it can be drastically depressed by adding to the reaction stream a low amount of oxygen.  相似文献   

18.
Hydrogen is a clean energy carrier that has the potential to mitigate the environmentally hazardous effects of fossil fuels. Hydrogen is mainly produced through the steam reforming of natural gas however it is also possible to produce hydrogen through the thermochemical conversion of various biomasses. In this study, three Aspen plus simulation models were developed to obtain hydrogen-rich gas products from biomass through catalytic steam reforming. The results obtained in this modeling study were compared to the experimental data obtained by the steam reforming of the sunflower meal, which is a waste product of the seed oil industry. Out of all three models, model II, in which all of the reactions are assumed to occur simultaneously and all species except for biomass are assumed to undergo combustion reactions, was the most successful one at predicting close results (93% similar) to experimental findings. Using this model, the effect of water:biomass feed ratio on the product yields was tested and the highest possible H2 yield (44.9 mol H2/kg sunflower meal) was achieved with a 15:1 water:biomass feed ratio at the constant temperature of 800 °C and atmospheric pressure.  相似文献   

19.
The generation of hydrogen-enriched synthesis gas from catalytic steam gasification of biomass with in-situ CO2 capture utilizing CaO has a high perspective as clean energy fuels. The present study focused on the process modeling of catalytic steam gasification of biomass using palm empty fruit bunch (EFB) as biomass for hydrogen generation through experimental work. Experiment work has been carried out using a fluidized bed gasifier on a bench-scale plant. The established model integrates the kinetics of EFB catalytic steam gasification reactions, in-situ capturing of CO2, mass and energy balance calculations. Chemical reaction constants have been calculated via the parameters fitting optimization approach. The influence of operating parameters, mainly temperature, steam to biomass, and sorbent to biomass ratio, was investigated for the hydrogen purity and yield through the experimental study and developed model. The results predicted approximately 75 vol% of the hydrogen purity in the product gas composition. The maximum H2 yield produced from the gasifier was 127 gH2/kg of EFB via experimental setup. The increase in both steam to biomass ratio and temperature enhanced the production of hydrogen gas. Comparing the results with already published literature showed that the current system enables to produce a high amount of hydrogen from EFB.  相似文献   

20.
A thermodynamic model is developed to determine the fuels that would yield an identical maximum cell voltage (MCV) for solid oxide fuel cells (SOFCs) at a given operating condition. These fuels make a continuous curve in the ternary coordinate system. A fuel map is established by developing the continuous fuel curves for different MCVs at the same operating condition and representing them in the carbon-hydrogen-oxygen (C-H-O) ternary diagram. Using the fuel map, the effect of the composition of a fuel containing carbon, hydrogen, oxygen, and inert gas atoms on the MCV of SOFCs can be easily studied. In addition to the effect of the fuel composition, the graphical representation of fuel maps can be applied to study the effect of the fuel processors on the MCV of SOFCs. As a general result, among fuels that can be directly utilized in SOFCs, at the same temperature and pressure, the one located at the intersection of the H-C axis and the carbon deposition boundary (CDB) curve in the C-H-O ternary diagram, provides the highest MCV for SOFCs. The results also show that for the fuels that cannot be directly utilized in SOFC, the steam reforming fuel processor always yields a higher MCV than the autothermal reforming or the partial oxidation fuel processors at the same inlet fuel temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号