首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article investigates the effects of melt treatment and addition of alloying elements on the impact toughness of as-cast and heat-treated Al–10.8% Si near-eutectic alloys. Increasingly precise impact behaviors are discussed in the context of differentiating between initiation and propagation energies, including the ductility index, which is the ratio of the propagation to initiation energies; total energy as a useful measure is also discussed. Details concerning the evaluation of tensile properties are reported in a separate article [Mohamed AMA, Samuel FH, Samuel AM, Doty HW. Influence of additives on the microstructure and tensile properties of near-eutectic Al–10.8%Si cast alloy. Mater Des, in press]. The concentration of elements in the alloys was changed to the following range: Fe 0.5–1 wt%, Mn 0.5–1 wt%, Cu 2.25–3.25 wt%, and Mg 0.3–0.5 wt%, while the impact toughness upon artificial aging in a temperature range of 155–240 °C for 5 h was also investigated. The results indicate that the morphology of fibrous Si in Sr-modified alloys enhances toughness because of its profound effect on crack initiation and crack propagation resistance. The combined addition of modifier and grain refiner leads to a 33% increase in the impact strength compared to the untreated alloy. In alloys containing high levels of iron, such as the RF2 (1% Fe, 1% Mn) and RF4 (1% Fe, 0.5% Mn) alloys, the addition of iron leads to an increased precipitation of sludge or β-Fe platelets, respectively; these particles also act as crack initiation sites and reduce the impact properties noticeably. In alloys already containing high levels of copper, such as the RC2 (3.25% Cu, 0.3% Mg) and RC5(0.3.25% Cu, 0.5% Mg) alloys, increasing the copper level lowers the impact properties significantly, in view of the fact that the fracture behavior is now predominantly influenced by the Al2Cu phase rather than by the Si particles. The average crack propagation speed of impact-tested samples shows a good inverse relationship to impact energy. Crack propagation speed can thus provide a qualitative estimation of the impact energy expected for special alloy conditions.  相似文献   

2.
In the present paper, the microstructure and mechanical properties of nanostructured Al–Mg–Si based AA6061 alloy obtained by high energy ball milling and spark plasma sintering were reported. Gas atomized microcrystalline powder of AA6061 alloy was ball milled under wet condition at room temperature to obtain nanocrystalline powder with grain size of 30 nm. The nanocrystalline powder was consolidated to fully dense compacts by spark plasma sintering (SPS) at 500 °C. The grain size after SPS consolidation was found to be 85 nm. The resultant SPS compacts exhibited microhardness of 190–200 HV100 g, compressive strength of 800 MPa and strain to fracture of 15%.  相似文献   

3.
Grain size of the ZK60 alloy was effectively reduced to 12 μm through high-ratio differential speed rolling (HRDSR) for a thickness reduction of 70% in a single pass. Due to the strengthening effects of grain boundaries and particles, the HRDSR processed ZK60 exhibited a high tensile strength of 340 MPa. Low temperature superplasticity was attained at 473–493 K at low strain rates (5 × 10−4 s−1) and high strain rate superplasticity was attained at 523–553 K at high strain rates (10−2 s−1). The optimum superplastic temperature was found to be 553 K where a maximum tensile elongation of 1000% was obtained at 1 × 10−3 s−1. The deformation behavior of the HRDSR processed ZK60 at elevated temperatures could be depicted by considering contribution of grain boundary sliding and slip creep to total plastic flow. Difference in superplastic deformation behavior between the HRDSR processed and equal channel angular press processed ZK60 alloys was examined and discussed.  相似文献   

4.
Compressive and wear properties of bulk nanostructured Al2024 alloy prepared by mechanical milling and hot pressing methods were investigated. Al2024 powders were subjected to high-energy milling for 30 h to produce nanostructured alloy. As-milled powders were compacted at 500 °C under 250 MPa in a uniaxial die. Consolidated sample had an average hardness and relative density values of 207.6 HV and 98%, respectively. Uniaxial compression tests at strain rates in the range of 1.67 × 10−4–1.67 × 10−2 s−1 were performed using an Instron-type machine. The wear behavior of nanostructured sample was investigated using a pin-on-disk technique under an applied load of 20 N. The compression and wear experiments were also executed on samples of commercial coarse-grained Al2024-O (annealed) and Al2024-T6 (artificially-aged) alloys, for comparison. The structure of consolidated Al2024 was characterized by X-ray diffraction (XRD). The yield strength and compressive strength of nanostructured Al2024 reached a value of 698 MPa and 712 MPa at strain rate of 1.67 × 10−4 s−1, respectively, which was considerably higher than those for coarse-grained Al2024-O and Al2024-T6 counterparts. Worn surfaces and the wear debris were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and XRD. Nanostructured Al2024 revealed a low friction coefficient of 0.3 and a wear rate of 12 × 10−3 mg/m, which are significantly lower than those obtained for Al2024-O and Al2024-T6 alloys. This enhanced wear resistance was mainly caused by nanocrystalline structure with high hardness value. The dominating wear mechanism of nanostructured Al2024 appeared to be delamination mechanism.  相似文献   

5.
Mechanical and thermal properties were characterized for two AlN:BN:SiC composite ceramics produced from BN with different particle sizes. The ceramics were hot pressed at temperatures from 1950 to 2100 °C to 97% relative density. For both materials, the matrix (90:10 vol% SiC:AlN) had a grain size of 0.4 μm, and the BN grains (10 vol%) were crystallographically aligned. Microhardness values were between 20 and 22 GPa, while fracture toughness values were between 2.5 and 3.1 MPa m1/2. Other properties were found to be dependent on testing direction. Elastic moduli were between 260 and 300 GPa and strengths were 630 MPa for small particle BN additions. Thermal conductivity was calculated to be between 25 and 37 W/m K at room temperature and 17 and 25 W/m K at 900 °C. The low values compared to traditional SiC ceramics were attributed to AlN–SiC solid solution formation and sub-micron matrix grain sizes.  相似文献   

6.
The 1 wt.%Ca–AZ31 alloy produced by electromagnetic casting (EMC) in presence of electromagnetic stirring (EMS) was extruded and then subjected to the closed-die forging to make a pulley for automobile application. Effective dynamic recrystallization (DRX) took place during the forging process, leading to formation of fully recrystallized grains with the average size of 3–4 μm. High-forging ability and high degree of grain refinement achieved during the forging were attributed to the novel microstructure of the cast composed of small and equiaxed grains with the average size of 50 μm and thin layer (Al, Mg)2 Ca phase at grain boundaries, which would provide more nucleation sites and a faster rate of recrystallization during deformation by forging as compared to that of the conventionally processed cast composed of large size grains and thick layer (Al, Mg)2 Ca phase. The forged pulley exhibited the ultimate tensile strength of 273–286 MPa with tensile elongations of 30%. The present result demonstrates a possibility that EMC + EMS techniques can be used in producing magnesium feed stocks with high-forging ability.  相似文献   

7.
Samples of a spray-cast Al-7034 alloy were processed by high-pressure torsion (HPT) at temperatures of 293 or 473 K using an imposed pressure of 4 GPa and torsional straining through five revolutions. Processing by HPT produced significant grain refinement with grain sizes of 60 and 85 nm at the edges of the disks for the two processing temperatures. In tensile testing at room temperature, the alloy processed by HPT exhibited higher strength and lower ductility than the unprocessed material. Good superplastic properties were achieved in tensile testing at elevated temperatures with a maximum elongation of 750% for the sample processed at 473 K and tested in tension at 703 K under an initial strain rate of 1.0 × 10−2 s−1. The measured superplastic elongations are lower than in samples prepared by equal-channel angular pressing because of the use of very thin disks in the HPT processing.  相似文献   

8.
The influence of boron to nitrogen ratio, strain rate and cooling rate on hot ductility of aluminium-killed, low carbon, boron microalloyed steel was investigated. Hot tensile testing was performed on steel samples reheated in argon to 1300 °C, cooled at rates of 0.3, 1.2 and 3.0 °C s−1 to temperatures in the range 750–1050 °C, and then strained to failure at initial strain rates of 1 × 10−4 or 1 × 10−3 s−1. It was found that the steel with a B:N ratio of 0.19 showed deep hot ductility troughs for all tested conditions; the steel with a B:N ratio of 0.47 showed a deep ductility trough for a high cooling rate of 3.0 °C s−1 and the steel with a near-stoichiometric B:N ratio of 0.75 showed no ductility troughs for the tested conditions. The ductility troughs extended from 900 °C (near the Ae3 temperature) to 1000 or 1050 °C in the single-phase austenite region. The proposed mechanism of hot ductility improvement with increase in B:N ratio in these steels is that the B removes N from solution, thus reducing the strain-induced precipitation of AlN. Additionally, BN co-precipitates with sulphides, preventing precipitation of fine MnS, CuS and FeS, and forming large, complex precipitates that have no effect on hot ductility.  相似文献   

9.
The effect of various strain rates on the tensile behavior of a single crystal nickel-base superalloy was studied. Single crystals with 0 0 1 crystal orientation were tested at 800 and 1000 °C under three kinds of strain rate of 10−3, 10−4 and 6 × 10−5 s−1. The yield strength increased with the increase of strain rate, while the configuration of the stress–strain curves was independent of strain rate. Additionally, fracture surface was related to strain rate at two temperatures. At 800 °C the amount of cleavage surface was different at three strain rates, which resulted from the difference of activated slip systems. The elongation increased with the decrease of strain rate, which was influenced by the heterogeneous ductile deformation. At 1000 °C the difference of fracture surface was attributed to the microvoid at higher strain rate, while the γ/γ′ interfaces also played an important role at lower strain rate; elongation rate was independent of strain rate.  相似文献   

10.
The low cycle fatigue René 80, a Ni-base superalloy, was studied at temperature of 871 °C, R = (min/max) = 0 and strain rate of about 2 × 10−3 s−1. The dislocation structure and failure surface observations were evaluated through TEM and SEM. TEM studies showed that at Δt = 0.8% during the first cycle the dislocations formed a hexagonal network in the γ-phase matrix. When the number of cycles increased, the density of dislocations increased as well. At N = Nf and Δt = 0.8% the cutting of γ′ precipitates took place. SEM studies at Δt = 0.8% and N = Nf showed that fatigue crack initiation generally occurred at the surface, where it is depleted of the γ′ phase as a result of oxidation by the high-temperature exposure. In addition to depleted zones, the grain boundary oxidation and oxide spikes were also considered as further crack initiation sites.  相似文献   

11.
The dielectric constant (εr), dielectric loss (tan δ) and strain induced by electric field in lead magnesium niobate–lead titanate (PMN-PT/PMNT) solid solutions in the morphotropic phase boundary (MPB) region at different sintering temperatures have been studied. εr and tan δ increase, whereas Curie phase transition range decreases with the increase in sintering temperature. Strain levels in the range of 0.07–0.2% were obtained. A high saturated strain% 0.19, a high d33 coefficient 320 pm/V and a low strain hysteresis% 3.5 in PMNT 68/32 composition sintered at 1200 °C indicate its suitability for actuator applications.  相似文献   

12.
The results of film deposition of pure tungsten as well as intermetallic compound of NdFeB type on various substrates using planar ECR plasma source (with multipole magnetic field) developed in our laboratory are presented. The frequency of 2.45 GHz was generated within the magnetic system by two-slot antenna. The ions of ECR argon plasma are used for target sputtering. The main plasma parameters are density 1010 cm−3, Te15 eV, ions energy 20 eV, ion current density 3.5 mA/cm2 at the ultimate magnetron power. Under sputtering of Nd8Fe86B6 target the amorphous films with high adherence and thickness of 5 μm were formed on the substrate. The deposition rate of tungsten films (target biasing 900 V) was 0.59 nm/s. The fine-grained films with high adhesion were obtained. They were tested against heat loads up to 100 J/cm2 produced under irradiation of coatings with plasma streams.  相似文献   

13.
The efficiency of grain refinement in equal channel angular extrusion of body-centered cubic (bcc) materials is investigated based on slip activities from crystal plasticity simulations, which account for both the macroscopic and crystallographic features of deformation. It is shown that the characteristics of slip activities, especially the relative contributions of slip systems newly activated or reversed at the transitions between successive passes, vary significantly with the processing routes (A, B and C) and die angles ( = 90° and 120°). The simulations assuming {1 1 0}111 slip suggest that routes B and A lead to the most significant contributions of newly activated slip systems and hence are most efficient for grain refinement with  = 90° and 120°, respectively. Further incorporation of {1 1 2}111 slip systems leads to the highest efficiency by route B for both die angles. These predictions are in partial agreement with experimental observations in the literature. Comparison of these results with those of face-centered cubic materials reveals the relevance of crystal structure and deformation mechanism during grain refinement.  相似文献   

14.
Ultrafine alumina powder was prepared through resin formation between urea and formaldehyde. Aluminium stearate soap was introduced during resin preparation. Ethylene glycol was used to terminate the thermosetting reaction. Calcination of the product was carried out at 700, 1000, 1100, 1300 and 1400 °C to obtain aluminium oxide.IR and Raman spectroscopic analysis indicated the occupation of Al3+ at different sites in the polymer network (CO, NH2, CO, NH, and CH2OH).X-ray diffraction of powder calcined at 1000 °C revealed the presence of a mixture of α- and θ-alumina together, while a mixture of α- and β-alumina phases were obtained on calcination at 1400 °C. Transmission electron microscope (TEM) examination of the powder fired at 700 °C showed uniform grains in the form of clusters with average size between 22.02 and 30.5 nm. Clusters are multi-particles as evident from the electron diffraction pattern. Crystallite size of alumina powder calcined at 1000 °C was found to be ≈25.67 nm, while that of powder calcined at1400 °C was ≈30.52 nm. The calculated specific surface area of alumina powder calcined at 1000 °C was 59.17 m2 g−1, while that calcined at 1400 °C was 49.77 m2 g−1.  相似文献   

15.
The present work extends a recent model for plastic deformation of polycrystalline metals based on irreversible thermodynamics. A general dislocation evolution equation is derived for a wide range of strain rates. It is found that there is a transitional strain rate (103 s−1) over which the phonon drag effects play a dominant role in dislocation generation resulting in a significant raise in the dislocation density and flow stress. The model reduces to the classical Kocks–Mecking model at low strain rates.  相似文献   

16.
Both directional and isothermal annealing experiments have been performed on the hot-rolled ODS nickel-based superalloy MA 754. Directional annealing of MA 754 produced an elongated, coarse grain structure with a {1 1 0}1 0 0 texture for all hot-zone velocities examined, with the grain aspect ratio and twin boundary density decreasing with increasing hot-zone velocity. Isothermal annealing also produced elongated structures, but with larger grain aspect ratios and a stronger {1 1 0}1 0 0 texture. In order to elucidate the results of the experimental studies, a front-tracking computer-based model [H.J. Frost, C.V. Thompson, C.L. Howe, J.H. Whang, Scripta Metall. 22 (1988) 65–70] was modified to simulate the directional/isothermal annealing processes for materials with particles. Simulations of directional annealing with particles aligned in the direction of hot-zone movement could produce (at the appropriate hot-zone velocities) columnar grain structures with some finer grains clustered around the particles. Contrary to experimental observations, simulations of isothermal annealing in similar particle-containing material did not produce columnar grain structures, but equi-axed grains whose size was defined by the spacing between the lines of particles. Thus, the simulation results suggest that it is the texture, and not the particles, of the hot-rolled MA 754 that leads to a columnar grain structure.  相似文献   

17.
This study was carried out to investigate the adsorption equilibrium and kinetics of a pesticide of the uracil group on powdered activated carbon (PAC). The experiments were conducted at a wide range of initial pesticide concentrations (5 μg L−1 to 500 μg L−1 at pH 7.8), corresponding to equilibrium concentrations of less than 0.1 μg L−1 for the weakest, which is compatible with the tolerance limits of drinking water. Such a very broad range of initial solute concentrations resulting powdered activated carbon (PAC) concentrations (0.1–5 mg L−1) is the main particularity of our study. The application of several monosolute equilibrium models (two, three or more parameters) has generally shown that Bromacil adsorption is probably effective on two types of sites. High reactivity sites (KL  103 L mg−1) which are 10–20 less present in a carbon surface than lower reactivity sites (KL  10 L mg−1), according to the qm values calculated by two- or three-parameter models. The maximum capacity of the studied powdered activated carbon (PAC), corresponding to monolayer adsorption, compared to the Bromacil molecule surface, would be between 170 mg g−1 and 190 mg g−1. This theoretical value is very close to the experimental qm values obtained when using linearized forms of Langmuir, Tóth and Fritz–Schluender models.  相似文献   

18.
Fast photoluminescence spectra in the spectral region of 3.1–3.45 eV in ZnO and ZnO:Al ceramics were studied at 14 and 300 K. Ceramics with grains smaller than 100 nm were sintered from nanopowders by high pressure (8 GPa) and low temperature (350 °C). Ceramics with grain sizes 1–5 μm were sintered at 1400 °C. It is shown that excitonic luminescence spectra depend on the ceramics grain size, post preparing annealing and doping. The excitonic luminescence decay time was faster than 2 ns and the afterglow at 30 ns was 0.05%.  相似文献   

19.
Fatigue tests were performed on pure copper polycrystals with a crystallographic texture different from that produced by ‘standard’ thermomechanical treatments, which emphasize multi-slip 111–100 textures. The texture along the loading axis deviated by 10–15° from these two poles for the samples used here. The experiments were initiated by ramp loading as a mechanical pretreatment and the cyclic stress–strain curve (CSSC) was established by step tests using enough cycles at each step to insure saturation. Under these conditions, a plateau was observed in the CSSC at an appropriate stress level and in a reproducible fashion.  相似文献   

20.
Hot extrusion experiment was conducted using an Al–Mg–Si–Cu alloy and the effect of the extrusion conditions on microstructure and texture changes through the radial direction was investigated by using SEM/EBSP analysis method. In the surface layer where severe frictional shear deformation is predominant, the recrystallized 1 1 0//ED grains surrounded by high angle grain boundaries are formed in spite of the existence of some peripheral overcoarse grains. Strong 1 0 0//ED and 1 1 1//ED fiber textures evolve in the center where axisymmetric deformation along the extrusion direction is intensive. As the extrusion ratio increases, number of 1 1 1//ED grains remarkably decreases while the number of 1 0 0//ED grains apparently increases. It is also found that the 1 0 0//ED grains surrounded by low angle grain boundaries form orientation colonies in the center of the extruded rods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号