共查询到20条相似文献,搜索用时 0 毫秒
1.
Peter Habisreuther Flavio Cesar Cunha Galeazzo Chockalingam Prathap Nikolaos Zarzalis 《Combustion and Flame》2013,160(12):2770-2782
Auto-ignition and flame propagation are the two different controlling mechanisms for stabilizing the flame in secondary stage combustion in hot vitiated air environment and at elevated pressure. The present work aims at the investigation of the flame stabilization mechanism of flames developing in such an environment. In order to better understand the structure of turbulent flames at inlet temperature well above the auto-ignition temperature, the behavior of laminar flames at those conditions needs to be analyzed. As an alternative to challenging and expensive measurements at high temperature and pressure, the behavior of laminar flames at such conditions can be predicted from theory using mathematical simulation. In the present work, the laminar burning velocities and flame structures of premixed stoichiometric methane/air mixtures for inlet temperatures from 300 to 1450 K and absolute pressures from 1 to 8 bar have been calculated using a freely propagating laminar, one dimensional, planar flame model. The prediction shows that at inlet temperatures below the auto-ignition temperature, the predicted laminar burning velocity which corresponds to the unburned mixture velocity in order to create a steady laminar flame decreases with increase in pressure. When the inlet temperature of the mixture goes well beyond the auto-ignition temperature of the mixture, however, the unburned mixture velocity increases steeply at higher pressure level, because of a complete transition of the flame structure. 相似文献
2.
The uncertainties associated with the extraction of laminar flame speeds through extrapolations from directly measured experimental data were assessed using one-dimensional direct numerical simulations with focus on the effects of molecular transport and thermal radiation loss. The simulations were carried out for counterflow and spherically expanding flames given that both configurations are used extensively for the determination of laminar flame speeds. The spherically expanding flames were modeled by performing high fidelity time integration of the mass, species, and energy conservation equations. The simulation results were treated as “data” for stretch rate ranges that are encountered in experiments and were used to perform extrapolations using formulas that have been derived based on asymptotic analyses. The extrapolation results were compared then against the known answers of the direct numerical simulations. The fuel diffusivity was varied in order to evaluate the flame response to stretch and to address reactant differential diffusion effects that cannot be captured based on Lewis number considerations. It was found that for large molecular weight hydrocarbons at fuel-rich conditions, the flame behavior is controlled by differential diffusion and that the extrapolation formulas can result in notable errors. Analysis of the computed flame structures revealed that differential diffusion modifies the fluxes of fuel and oxygen inside the flame and thus affect the reactivity as stretch increases. Radiation loss was found to affect notably the extracted laminar flame speed from spherically expanding flame experiments especially for slower flames, in agreement with recent similar studies. The effect of radiation could be eliminated however, by determining the displacement speed relative to the unburned gas. This can be achieved in experiments using high-speed particle image velocimetry to determine the flow velocity field within the few milliseconds duration of the experiment. In general, extrapolations were found to be unreliable under certain conditions, and it is proposed that the raw experimental data in either flame configurations are compared against results of direct numerical simulations in order to avoid potential falsifications of rate constants upon validation. 相似文献
3.
Yang L. Wang Dong J. Lee Charles K. Westbrook Fokion N. Egolfopoulos Theodore T. Tsotsis 《Combustion and Flame》2014
The oxidation characteristics of several small methyl and ethyl esters with carbon number less than six were investigated in laminar flames. The kinetics of such fuels are subsets of those of larger alkyl esters that are constituents of practical biodiesel fuels. A total of seven fuels, namely methyl formate, methyl acetate, methyl propionate, methyl butanoate, ethyl formate, ethyl acetate, and ethyl propionate were considered. Experiments were conducted at atmospheric pressure, elevated reactant temperatures, and over a wide range of equivalence ratios. Laminar flame speeds were determined in the counterflow configuration in which flow velocities were measured using particle image velocimetry. Several detailed kinetic models were tested against the experimental data, and insight was provided into the high-temperature combustion kinetics of the aforementioned fuels. Based on comparisons between experimental and computed results it became apparent that the chemistry of alkyl-ester combustion chemistry is evolving and much needs to be done in order to derive improved rate constants for a wide range of elementary steps. 相似文献
4.
The main objectives of this research consist in achieving both experimental and numerical studies of the combustion and oxidation of ethanol. Experimental mole fraction profiles of chemical species (stable, radical, and intermediates) were measured in three C2H5OH/O2/Ar flat premixed flames stabilized at low pressure (50 mbar) and with equivalence ratios equal to 0.75, 1, and 1.25, respectively. The experimental setup used to determine the structure of one-dimensional laminar premixed flames consists of a molecular beam mass spectrometer system (MBMS) combined with electron impact ionization (EI). The oxidation of ethanol was also experimentally studied using a fused silica jet-stirred reactor (JSR). Experiments were performed in the temperature range 890–1250 K, at 1 atm, at four equivalence ratios equal to 0.25, 0.5, 1, and 2 and with an initial fuel concentration of 2000 ppm.A kinetic study was conducted in order to simulate all experimental data measured. It enabled building a kinetic mechanism by thoroughly reviewing the available literature and by taking into account specificities of the two kinds of experiments performed. Validity of the mechanism was also checked against experimental results previously published (ethanol oxidation in a JSR at 10 atm, ignition in a shock tube, combustion in premixed, partially-premixed, and non-premixed flames). This mechanism ensures a reasonably good modelling of the combustion and oxidation of ethanol over the wide range of experimental conditions investigated. 相似文献
5.
V.R. Katta R.A. Forlines W.M. Roquemore W.S. Anderson J. Zelina J.R. Gord S.D. Stouffer S. Roy 《Combustion and Flame》2011,(3):511-524
The centerbody burner was designed with the objective of understanding the coupled processes of soot formation, growth, and burnout. Fuel that issues from the center of the burner establishes two flame zones – one associated with the recirculation zone (RZ) and the other, with the trailing jet. The sooting characteristics in these two flame zones can be quite different because of variations in residence time and transport of reactants and products. Calculations performed for this burner operating under a partially premixed fuel jet suggested that soot in the RZ decreases and that soot in the trailing jet flame increases with the amount of premixing. An experimental and numerical study is performed to aid the understanding of these differences. A time-dependent, axisymmetric, detailed-chemistry computational-fluid-dynamics (CFD) model known as Unsteady Ignition and Combustion using ReactioNs (UNICORN) is used for simulating flames under different equivalence-ratio conditions. Combustion and PAH formation are modeled using the Wang–Frenklach (99 species and 1066 reactions) mechanism, and soot is simulated using a two-equation model of Lindstedt. A Lagrangian-based particle-tracking model is used for understanding the evolution of soot-like particles. Flame and recirculation-zone structures and soot in the experiments are identified using direct photographs taken with and without Mie scattering from soot particles as well as laser-induced-incandescence (LII) measurements. Calculations predict the structures of the partially premixed centerbody flames for various equivalence ratios reasonably well. Experiments confirm the predicted soot suppression in the RZs and enhancement of soot in the trailing jet flame when air is added to the fuel jet. It is found that flame movement in the RZ increases soot-particle burnout and, thereby, reduces the amount of soot within the RZ. As the flame moves closer to the fuel jet, more soot becomes entrained into the inner vortex. Motion of soot-like particles explained the spiral rings observed in the experiment. Increased particle burnout with partial premixing leads to shrinkage of soot spirals. 相似文献
6.
Beth Anne V. Bennett Charles S. McEnally Mitchell D. Smooke 《Combustion and Flame》2009,156(6):1289-1302
Two sets of axisymmetric laminar coflow flames, each consisting of ethylene/air nonpremixed flames with various amounts (up to 10%) of either dimethyl ether (CH3-O-CH3) or ethanol (CH3-CH2-OH) added to the fuel stream, have been examined both computationally and experimentally. Computationally, the local rectangular refinement method, which incorporates Newton's method, is used to solve the fully coupled nonlinear conservation equations on solution-adaptive grids for each flame in two spatial dimensions. The numerical model includes C6 chemical kinetic mechanisms with up to 59 species, detailed transport, and an optically thin radiation submodel. Experimentally, thermocouples are used to measure gas temperatures, and mass spectrometry is used to determine concentrations of over 35 species along the flame centerline. Computational results are examined throughout each flame, and validation of the model occurs through comparison with centerline measurements. Very good agreement is observed for temperature, major species, and several minor species. As the level of additive is increased, temperatures, some major species (CO2, C2H2), flame lengths, and residence times are essentially unchanged. However, peak centerline concentrations of benzene (C6H6) increase, and this increase is largest when dimethyl ether is the additive. Computational and experimental results support the hypothesis that the dominant pathway to C6H6 formation begins with the oxygenates decomposing into methyl radical (CH3), which combines with C2 species to form propargyl (C3H3), which reacts with itself to form C6H6. 相似文献
7.
Acetone ignition delay and stretch-free laminar flame speed measurements have been carried out and a kinetic model has been developed to simulate these and literature data for acetone and for ketene, which was found to be an important intermediate in its oxidation. The mechanism has been based on one originally devised for dimethyl ether and modified through validation of the hydrogen, carbon monoxide and methane sub-mechanisms. Acetone oxidation in argon was studied behind reflected shock waves in the temperature range 1340-1930 K, at 1 atm and at equivalence ratios of 0.5, 1 and 2; it is also shown that the addition of up to 15% acetone to a stoichiometric n-heptane mixture has no effect on the measured ignition delay times. Flame speeds at 298 K and 1 atm of pure acetone in air were measured in a spherical bomb; a maximum flame speed of ∼35 cm s−1 at ?=1.15 is indicated. 相似文献
8.
9.
Dong Liu Jeffrey Santner Casimir Togbé Daniel Felsmann Julia Koppmann Alexander Lackner Xueliang Yang Xiaobo Shen Yiguang Ju Katharina Kohse-Höinghaus 《Combustion and Flame》2013,160(12):2654-2668
The flame structure and kinetics of dimethyl ether (DME) flames with and without CO2 dilution at reduced and elevated pressures were studied experimentally and computationally. The species distributions of DME oxidation in low-pressure premixed flat flames were measured by using electron-ionization molecular-beam mass spectrometry (EI-MBMS) at an equivalence ratio of 1.63 and 50 mbar. High-pressure flame speeds of lean and rich DME flames with and without CO2 dilution were measured in a nearly-constant-pressure vessel between about 1 and 20 bar. The experimental results were compared with predictions from four kinetic models: the first was published by Zhao et al. (2008) [9], the second developed by the Lawrence Livermore National Laboratory (LLNL) (Kaiser et al., 2000) [13], and the third has been made available to us as the Aramco mechanism (Metcalfe et al., 2013) [14]; as the fourth, we have used an updated model developed in this study. Good agreement was found between measurements and predictions from all four models for all major and most typical intermediate species with and without CO2 addition in low-pressure flat flame experiments. However, none of the models was able to reliably predict high-pressure flame speeds. Although the updated model improved the prediction of flame speeds for lean mixtures, errors remained for rich conditions at elevated pressure, likely due to uncertainty in the rates of CH3 + H(+M) = CH4(+M) and the branching and termination reaction pair of CH3 + HO2 = CH3O + OH and CH3 + HO2 = CH4 + O2. CO2 addition considerably decreased the flame speed. Kinetic comparisons between inert and chemically active CO2 in DME flames showed that CO2 addition affects rich and lean DME flame kinetics differently. For lean flames, both the inert third-body effect and the kinetic effect of CO2 reduce H-atom production. However, for rich flames, the inert third-body effect increases H-atom production via HCO(+M) = H + CO(+M) and suppression of the kinetic effect of CO2 by shifting the equilibrium of CO + OH = CO2 + H. 相似文献
10.
Effects of flame stretch on the laminar burning velocities of near-limit fuel-lean methane/air flames have been studied experimentally using a microgravity environment to minimize the complications of buoyancy. Outwardly propagating spherical flames were employed to assess the sensitivities of the laminar burning velocity to flame stretch, represented by Markstein lengths, and the fundamental laminar burning velocities of unstretched flames. Resulting data were reported for methane/air mixtures at ambient temperature and pressure, over the specific range of equivalence ratio that extended from 0.512 (the microgravity flammability limit found in the combustion chamber) to 0.601. Present measurements of unstretched laminar burning velocities were in good agreement with the unique existing microgravity data set at all measured equivalence ratios. Most of previous 1-g experiments using a variety of experimental techniques, however, appeared to give significantly higher burning velocities than the microgravity results. Furthermore, the burning velocities predicted by three chemical reaction mechanisms, which have been tuned primarily under off-limit conditions, were also considerably higher than the present experimental data. Additional results of the present investigation were derived for the overall activation energy and corresponding Zeldovich numbers, and the variation of the global flame Lewis numbers with equivalence ratio. The implications of these results were discussed. 相似文献
11.
Philippe Dagaut Florent Karsenty Guillaume Dayma Pascal Diévart Kamal Hadj-Ali Amir Mzé-Ahmed Marina Braun-Unkhoff Jürgen Herzler Trupti Kathrotia Thomas Kick Clemens Naumann Uwe Riedel Levi Thomas 《Combustion and Flame》2014
The kinetics of oxidation, ignition, and combustion of Gas-to-Liquid (GtL) Fischer–Tropsch Synthetic kerosene as well as of a selected GtL-surrogate were studied. New experimental results were obtained using (i) a jet-stirred reactor – species profiles (10 bar, constant mean residence time of 1 s, temperature range 550–1150 K, equivalence ratios φ = 0.5, 1, and 2), (ii) a shock tube – ignition delay time (≈16 bar, temperature range 650–1400 K, φ = 0.5 and 1), and (iii) a burner – laminar burning velocity (atmospheric pressure, preheating temperature = 473 K, 1.0 ? φ ? 1.5). The concentrations of the reactants, stable intermediates, and final products were measured as a function of temperature in the jet-stirred reactor (JSR) using probe sampling followed by on-line Fourier Transformed Infra-Red spectrometry, and gas chromatography analyses (on-line and off-line). Ignition delay times behind reflected shock waves were determined by measuring time-dependent CH* emission at 431 nm. Laminar flame speeds were obtained in a bunsen-type burner by applying the cone angle method. Comparison with the corresponding results for Jet A-1 showed comparable combustion properties. The GtL-fuel oxidation was modeled under these conditions using a detailed chemical kinetic reaction mechanism (8217 reactions vs. 2185 species) and a 3-component model fuel mixture composed of n-decane, iso-octane (2,2,4-trimethyl pentane), and n-propylcyclohexane. The model showed good agreement with concentration profiles obtained in a JSR at 10 bar. In the high temperature regime, the model represents well the ignition delay times for the fuel air mixtures investigated; however, the calculated delays are longer than the measurements. It was observed that the ignition behavior of the surrogate fuel is mainly influenced by n-alkanes and not by the addition of iso-alkanes and cyclo-alkanes. The simulated laminar burning velocities were found in excellent agreement with the measurements. No deviation between burning velocity data for the GtL-surrogate and GtL was seen, within the uncertainty range. The presented data on ignition delay times and burning velocities agree with earlier results obtained for petrol-derived jet fuel. The suitability of both the current detailed reaction model and the selected GtL surrogate was demonstrated. Finally, our results support the use of the GtL fuel as an alternative jet fuel. 相似文献
12.
Laminar flame speed has traditionally been used for the partial validation of flame kinetics. In most cases, however, its accurate determination requires extensive data processing and/or extrapolations, thus rendering the measurement of this fundamental flame property indirect. Additionally, the presence of flame front instabilities does not conform to the definition of laminar flame speed. This is the case for Le<1 flames, with the most notable example being ultralean H2/air flames, which develop cellular structures at low strain rates so that determination of laminar flame speeds for such mixtures is not possible. Thus, this low-temperature regime of H2 oxidation has not been validated systematically in flames. In the present investigation, an alternative/supplemental approach is proposed that includes the experimental determination of extinction strain rates for these flames, and these rates are compared with the predictions of direct numerical simulations. This approach is meaningful for two reasons: (1) Extinction strain rates can be measured directly, as opposed to laminar flame speeds, and (2) while the unstretched lean H2/air flames are cellular, the stretched ones are not, thus making comparisons between experiment and simulations meaningful. Such comparisons revealed serious discrepancies between experiments and simulations for ultralean H2/air flames by using four kinetic mechanisms. Additional studies were conducted for lean and near-stoichiometric H2/air flames diluted with various amounts of N2. Similarly to the ultralean flames, significant discrepancies between experimental and predicted extinction strain rates were also found. To identify the possible sources of such discrepancies, the effect of uncertainties on the diffusion coefficients was assessed and an improved treatment of diffusion coefficients was advanced and implemented. Under the conditions considered in this study, the sensitivity of diffusion coefficients to the extinction response was found to be significant and, for certain species, greater than that of the kinetic rate constants. 相似文献
13.
The possibility is analysed of a laminar flame accelerating along a cylindrical tube, closed at one end, and inducing a deflagration to detonation transition in a stoichiometric H2/O2 mixture. The pressure and temperature ratios at the ensuing shock wave increase, as do laminar burning velocities, while autoignition delay times decrease. Combined with appreciable elongation of the flame, these enhance the strength of the shock. The conditions necessary for delay times of 0.05, 0.1, 1.0 and 5.0 ms, at an unburned mixture critical Reynolds number of 2300, are computed for different tube diameters. Probable consequences of the different delay times and hot spot reactivity gradients, including detonation, are all considered. The probability of a purely laminar propagation leading to a detonation is marginal. Only when the initial temperature is raised to 375 K, do purely laminar detonations become possible in tubes of between about 0.5 and 1.35 mm diameter. 相似文献
14.
T.S. Cheng Y.-C. ChangY.-C. Chao G.-B. ChenY.-H. Li C.-Y. Wu 《International Journal of Hydrogen Energy》2011,36(20):13207-13217
The effects of variations in the fuel composition on the characteristics of H2/CO/CH4/air flames of gasified biomass are investigated experimentally and numerically. Experimental measurements and numerical simulations of the flame front position and temperature are performed in the premixed stoichiometric H2/CO/CH4/air opposed-jet flames with various H2 and CO contents in the fuel. The adiabatic flame temperatures and laminar burning velocities are calculated using the EQUIL and PREMIX codes of Chemkin collection 3.5, respectively. Whereas the flame structures of the laminar premixed stoichiometric H2/CO/CH4/air opposed-jet flames are simulated using the OPPDIF package with the GRI-Mech 3.0 chemical kinetic mechanisms and detailed transport properties. The measured flame front position and temperature of the stoichiometric H2/CO/CH4/air opposed-jet flames are closely predicted by the numerical calculations. Detailed analysis of the calculated chemical kinetic structures reveals that the reaction rate of reactions (R38), (R46), and (R84) increase with increasing H2 content in the fuel mixture. It is also found that the increase in the laminar flame speed with H2 addition is most likely due to an increase in active radicals during combustion (chemical effect), rather than from changes in the adiabatic flame temperature (thermal effect). Chemical kinetic structure and sensitivity analyses indicate that for the stoichiometric H2/CO/CH4/air flames with fixed H2 concentration in the fuel mixture, the reactions (R99) and (R46) play a dominant role in affecting the laminar burning velocity as the CO content in the fuel is increased. 相似文献
15.
In this work, the outcomes of interactions of counter-rotating vortex pairs with developing ignition kernels are studied. The conditions are selected to represent those in a lean-burn natural-gas engine with hot-jet ignition. The evolution of flame surface area during kernel–vortex interaction is quantitatively and qualitatively examined. It is observed that flame development is accelerated and the net flame surface area growth rate, i.e. heat release rate, increased with increasing vortex velocity. In general, increasing the vortex length scale increases the surface growth rate, i.e. increases heat release rates, but for small length scales, i.e. when the ratio of vortex length scale to kernel diameter is small, high flame curvature induced during the interaction leads to flame weakening and slower growth rates. When the vortex velocity is high relative to the flame speed and the length scale is comparable to the kernel diameter, the vortex breaks through the ignition kernel carrying with it hot products of combustion. This accelerates growth of the flame surface area and heat release rates compared to a kernel with no vortex interaction. On decreasing the vortex velocity and increasing the length scale, the wrinkling of the kernel becomes important. This also results in increased surface growth rates and higher heat release rates. 相似文献
16.
B.C. Choi 《Combustion and Flame》2009,156(2):396-404
Characteristics of laminar lifted flames have been investigated experimentally by varying the initial temperature of coflow air over 800 K in the non-premixed jets of propane diluted with nitrogen. The result showed that the lifted flame with the initial temperature below 860 K maintained the typical tribrachial structure at the leading edge, which was stabilized by the balance mechanism between the propagation speed of tribrachial flame and the local flow velocity. For the temperature above 860 K, the flame was autoignited without having any external ignition source. The autoignited lifted flames were categorized in two regimes. In the case with tribrachial edge structure, the liftoff height increased nonlinearly with jet velocity. Especially, for the critical condition near blowout, the lifted flame showed a repetitive behavior of extinction and reignition. In such a case, the autoignition was controlled by the non-adiabatic ignition delay time considering heat loss such that the autoignition height was correlated with the square of the adiabatic ignition delay time. In the case with mild combustion regime at excessively diluted conditions, the liftoff height increased linearly with jet velocity and was correlated well with the square of the adiabatic ignition delay time. 相似文献
17.
The effect of the equivalence ratio on the stability and dynamics of a premixed flame in a planar micro-channel with a step-wise wall temperature profile is numerically investigated using the thermo-diffusive approximation. To characterize the stability behavior of the flame, we construct the stability maps delineating the regions with different flame dynamics in the inlet mass flow rate m vs. the equivalence ratio ? parametric space. The flame stability is analyzed for fuels with different diffusivity by changing the Lewis numbers in the range 0.3?LeF?1.4. On the other hand, the Lewis number of the oxidizer is kept constant and equal to unity LeO=1. Our results show that, for very diffusive fuels, the stability of the flame varies significantly with the equivalence ratio, transitioning from stable flames for lean mixtures to highly unstable flames when ?>1. As the fuel Lewis number approaches unity, the stability behavior of the flame for lean and rich mixtures becomes more similar to give, in the equidiffusional case LeF=1, a symmetric stability map around the stoichiometric mixture ?=1. In all cases considered, the most stable flames are always found around the stoichiometric mixtures ?=1, when the flame instabilities are completely suppressed for very diffusive fuels LeF<1, or are reduced to a narrow range of inflow velocities for fuel Lewis numbers equal or greater than unity. 相似文献
18.
F. Liu X. He X. Ma Q. Zhang M.J. Thomson H. Guo G.J. Smallwood S. Shuai J. Wang 《Combustion and Flame》2011,(3):547-563
The effects of dimethyl ether addition to fuel on the formation of polycyclic aromatic hydrocarbons and soot were investigated experimentally and numerically in a laminar coflow ethylene diffusion flame at atmospheric pressure. The relative concentrations of polycyclic aromatic hydrocarbon species and the relative soot volume fractions were measured using planar laser-induced fluorescence and two-dimensional laser-induced incandescence techniques, respectively. Experiments were conducted over the entire range of dimethyl ether addition from pure ethylene to pure dimethyl ether in the fuel stream. The total carbon mass flow rate was maintained constant when the fraction of DME in the fuel stream was varied. Numerical calculations of nine diffusion flames of different dimethyl ether fractions in the fuel stream were performed using a detailed reaction mechanism consisting of 151 species and 785 reactions and a sectional soot model including soot radiation, inception of nascent soot particle due to collision of two pyrene molecules, heterogeneous surface growth and oxidation following the hydrogen abstraction acetylene addition mechanism, soot particle coagulation, and PAH surface condensation. The addition of a relatively small amount of dimethyl ether to ethylene was found experimentally to increase the concentrations of both polycyclic aromatic hydrocarbons and soot. The synergistic effect on polycyclic aromatic hydrocarbons persists over a wider range of dimethyl ether addition. The numerical results reproduce the synergistic effects of dimethyl ether addition to ethylene on both polycyclic aromatic hydrocarbons and soot, though the magnitude of soot volume fraction overshoot and the range of dimethyl ether addition associated with the synergistic effect of soot are less than those observed in the experiment. The synergistic effects of dimethyl ether addition to ethylene on many hydrocarbon species, including polycyclic aromatic ones, and soot can be fundamentally traced to the enhanced methyl concentration with the addition of dimethyl ether to ethylene. Contrary to previous findings, the pathways responsible for the synergistic effects of benzene, polycyclic aromatic hydrocarbons, and soot in the ethylene/dimethyl ether system are found to be primarily due to the cyclization of l-C6H6 and n-C6H7 and to a much lesser degree due to the interaction between C2 and C4 species for benzene formation, rather than the propargyl self-combination reaction route, though it is indeed the most important reaction for the formation of benzene. 相似文献
19.
A model for predicting heat and mass transfer in a laminar two-phase gas-vapor-drop mist flow over a flat isothermal flat is developed. Using this model, a numerical study is performed to examine the influence of thermal and flow parameters, i.e., Reynolds number, flow velocity, temperature ratio, concentration of the liquid phase, and drop size, on the profiles of velocity, temperature, composition of the two-phase mixture, and heat-transfer intensification ratio. It is shown that, as the concentration of the liquid phase in the free flow increases, the rate of heat transfer between the plate surface and the vapor-gas mixture increases dramatically, whereas the wall friction increases only insignificantly. 相似文献
20.
B.C. Choi 《Combustion and Flame》2010,157(12):2348-2356
The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800 K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion.For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time. 相似文献