首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
The Fe/ZrO2 catalyst (1% Fe by weight) shows a strong adsorption capacity toward the nitric oxide (at room temperature the ratio NOFe is ca. 0.5) as a consequence of the formation of a highly dispersed iron phase after reduction at 500–773 K. Nitric oxide is adsorbed mainly as nitrosyl species on the reduced surface where the Fe2+ sites are prevailing, but it is easily oxidised by oxygen forming nitrito and nitrato species adsorbed on the support. However, in the presence of a reducing gas such as hydrogen, carbon monoxide, propane and ammonia at 473–573 K the Fe-nitrosyl species react producing nitrogen, nitrous oxide, carbon dioxide and water, as detected by FTIR and mass spectrometers. The results show that nitric oxide reduction is more facile with hydrogen containing molecules than with CO, probably due the co-operation of spillover effects. Experiments carried out with the same gases in the presence of oxygen show, however, a reduced dissociative activity of the surface iron sites toward the species NOχ formed by NO oxidation and therefore the reactivity is shifted to higher temperatures.  相似文献   

2.
Changes in Fe---Mn---SO42−/ZrO2 catalyst formulations during activation have been observed. In air or an inert gas, the added salt, such as iron and/or manganese nitrate, decomposes over a temperature range of about 200–400°C to produce nitric oxide, oxygen and iron and/or manganese oxide. The crystallization of zirconia occurs at 450°C; when the sample contains sulfate the exothermic event occurs at a temperature that is about 200°C higher. Heating in the presence of hydrogen causes the evolution of nitric oxide to occur over a narrow temperature range and at a lower temperature than when the sample is heated in helium or air. It appears that the nitrate ions associated with Fe, Mn and Zr decompose to produce nitric oxide, and presumably water, at different temperatures when the sample is heated in the presence of hydrogen. Heating samples of sulfated zirconia containing iron and/or manganese in hydrogen causes sulfur evolution at a lower temperature, and a significant fraction of it in the form of H2S.  相似文献   

3.
The reduction of nitrogen oxides by propene in the presence of air under net oxidising conditions has been studied for two Cu/alumina catalysts of low (1%) and high (5%) copper loadings in a flow microreactor and by DRIFT. The reaction was studied in the range 473–773 K using mixtures of 2.5% NO, 1% C3H6 and 10% O2 with a balance of nitrogen or helium, using samples which were pretreated in air at 673 K and also over samples which had been pre-exposed to SO2 at 473 K. The surface species present under reaction conditions have been identified and the sensitivity of their adsorption sites in the two different loaded catalysts to SO2 pre-treatment has been investigated. SO2 adsorption enhanced NO adsorption at 473 K in the absence of oxygen and, in reaction, enhanced formation of NCO species leading to increased levels of adsorbed CO as a decomposition product.  相似文献   

4.
Nitric oxide and nitric dioxide compounds (NOx) present in stack gases from nitric acid plants are usually eliminated by selective catalytic reduction (SCR) with ammonia. In this process, small quantities of nitrous oxide (N2O) are produced. This undesirable molecule has a high greenhouse gas potential and a long lifetime in the atmosphere, where it can contribute to stratospheric ozone depletion. The influence of catalyst composition and some operating variables were evaluated in terms of N2O formation, using V2O5/TiO2 catalysts. High vanadia catalyst loading, nitric oxide inlet concentration and reaction temperature increase the generation of this undesirable compound. The results suggest that adsorbed ammonia not only reacts with NO via SCR, but also with small quantities of oxygen activated by the presence of NO. The mechanism proposed for N2O generation at low temperature is based on the formation of surface V–ON species which may be produced by the partial oxidation of dissociatively adsorbed ammonia species with NO + O2 (eventually NO2). When these active sites are in close proximity they can interact to form an N2O molecule. This mechanism seems to be affected by changes in the active site density produced by increasing the catalyst vanadia loading.  相似文献   

5.
A novel multiwalled carbon nanotube (CNTs) supported vanadium catalyst was prepared. The structure of catalyst prepared was characterized by TEM, BET, FTIR, XRD and temperature-programmed desorption (TPD) methods. The results indicated that vanadium particles were highly dispersed on the wall of carbon nanotubes. The V2O5/CNT catalysts showed good activities in the SCR of NO with a temperature range of 373–523 K. The Lewis acid sites on the surface of V2O5/CNT are the active sites for the selective catalytic reduction (SCR) of NO with NH3 at low temperatures. It was suggested that the reaction path might involve the adsorbed NH3 species reacted with NO from gaseous phase and as well as the adsorbed NO2 species. The diameter of CNTs showed positive effect on the activities of the catalysts. Under the reaction conditions of 463 K, 0.1 Mpa, NH3/NO = 1, GHSV = 35,000 h−1, and V2O5 loading of 2.35 wt%, the outer diameter of CNTs of 60–100 nm, the NO conversion was 92%.  相似文献   

6.
The reaction pathways of N2 and N2O formation in the direct decomposition and reduction of NO by NH3 were investigated over a polycrystalline Pt catalyst between 323 and 973 K by transient experiments using the temporal analysis of products (TAP-2) reactor. The interaction between nitric oxide and ammonia was studied in the sequential pulse mode applying 15NO. Differently labelled nitrogen and nitrous oxide molecules were detected. In both, direct NO decomposition and NH3–NO interaction, N2O formation was most marked between 573 and 673 K, whereas N2 formation dominated at higher temperatures. An unusual interruption of nitrogen formation in the 15NO pulse at 473 K was caused by an inhibiting effect of adsorbed NO species. The detailed analysis of the product distribution at this temperature clearly indicates different reaction pathways leading to the product formation. Nitrogen formation occurs via recombination of nitrogen atoms formed by dissociation of nitric oxide or/and complete dehydrogenation of ammonia. N2O is formed via recombination of adsorbed NO molecules. Additionally, both products are formed via interactions between adsorbed ammonia fragments and nitric oxide.  相似文献   

7.
Mechanistic and kinetic aspects of the direct decomposition of N2O over steam-activated Fe-silicalite were investigated by transient experiments in vacuum (N2O peak pressure of ca. 10 Pa) using the temporal analysis of products (TAP) reactor in the temperature range of 773–848 K. The transient responses of N2O, N2, and O2 obtained upon N2O decomposition were fitted to different micro-kinetic models. Through model discrimination it was concluded that both free iron sites and iron sites with adsorbed mono-atomic oxygen (*O) species are active for N2O decomposition. Oxygen formation occurs via decomposition of bi-atomic (*O2) oxygen species adsorbed over the iron site. This bi-atomic oxygen species originates from another bi-atomic oxygen species (O*O), which is initially formed via interaction of N2O with iron site possessing mono-atomic oxygen species (*O). Based on our modeling, the recombination of two mono-atomic oxygen (*O) species or direct O2 formation via reaction of N2O with *O can be excluded as potential reaction pathways yielding gas-phase O2. The simulation results predict that the overall rate of N2O decomposition is controlled by regeneration of free iron sites via a multi-step oxygen formation at least below 700 K.  相似文献   

8.
Sharp NO and O2 desorption peaks, which were caused by the decomposition of nitro and nitrate species over Fe species, were observed in the range of 520–673 K in temperature-programmed desorption (TPD) from Fe-MFI after H2 treatment at 773 K or high-temperature (HT) treatment at 1073 K followed by N2O treatment. The amounts of O2 and NO desorption were dependent on the pretreatment pressure of N2O in the H2 and N2O treatment. The adsorbed species could be regenerated by the H2 and N2O treatment after TPD, and might be considered to be active oxygen species in selective catalytic reduction (SCR) of N2O with CH4. However, the reaction rate of CH4 activation by the adsorbed species formed after the H2 and N2O or the HT and N2O treatment was not so high as that of the CH4 + N2O reaction over the catalyst after O2 treatment. The simultaneous presence of CH4 and N2O is essential for the high activity of the reaction, which suggests that nascent oxygen species formed by N2O dissociation can activate CH4 in the SCR of N2O with CH4.  相似文献   

9.
Direct nitric oxide decomposition over perovskites is fairly slow and complex, its mechanism changing dramatically with temperature. Previous kinetic study for three representative compositions (La0.87Sr0.13Mn0.2Ni0.8O3−δ, La0.66Sr0.34Ni0.3Co0.7O3−δ and La0.8Sr0.2Cu0.15Fe0.85O3−δ) has shown that depending on the temperature range, the inhibition effect of oxygen either increases or decreases with temperature. This paper deals with the effect of CO2, H2O and CH4 on the nitric oxide decomposition over the same perovskites studied at a steady-state in a plug-flow reactor with 1 g catalyst and total flowrates of 50 or 100 ml/min of 2 or 5% NO. The effect of carbon dioxide (0.5–10%) was evaluated between 873 and 923 K, whereas that of H2O vapor (1.6 or 2.5%) from 723 to 923 K. Both CO2 and H2O inhibit the NO decomposition, but inhibition by CO2 is considerably stronger. For all three catalysts, these effects increase with temperature. Kinetic parameters for the inhibiting effects of CO2 and H2O over the three perovskites were determined. Addition of methane to the feed (NO/CH4=4) increases conversion of NO to N2 about two to four times, depending on the initial NO concentration and on temperature. This, however, is still much too low for practical applications. Furthermore, the rates of methane oxidation by nitric oxide over perovskites are substantially slower than those of methane oxidation by oxygen. Thus, perovskites do not seem to be suitable for catalytic selective NO reduction with methane.  相似文献   

10.
The reduction of nitric oxide by propene in the presence of oxygen over platinum-group metals supported on TiO2, ZnO, ZrO2, and Al2O3 has been investigated by combined diffuse reflectance FT-IR spectroscopy and catalytic activity studies under flow reaction conditions at 523–673 K and atmospheric pressure. The catalytic activity for the selective reduction of nitric oxide and the intensity of the IR bands due to reaction species depended strongly on the nature of the support, type of supported metal, reaction time and temperature. The main surface species detectable by IR were adsorbed hydrocarbons (2900–3080 cm−1), isocyanate (2180, and 2232–2254 cm−1), cyanide (2125 cm−1), nitrosonium (1901 cm−1), CO2 (2343–2357 cm−1), CO (2058 cm−1) and carbonate (1300–1650 cm−1) species. In the case of rhodium containing catalysts, when supported on Al2O3, they exhibited both the highest concentration of surface species and the highest activity for nitric oxide reduction and selectivity to nitrogen. The catalytic activity and the IR intensities of the nitrosonium and isocyanate bands increased with reaction temperature, reached their maximum between 570 and 620 K, and then decreased at higher temperatures. The IR band intensities due to nitrogen containing surface species were found to be strongly correlated to the activity for nitric oxide conversion and only slightly related to the selectivity to dinitrogen.  相似文献   

11.
The oxidation of propylene to propylene oxide (PO) with hydrogen–oxygen mixtures was studied on gold supported on the mesoporous titanium silicate, Ti-TUD. The catalyst gave stable activity at low conversions of propylene (<6%) and high selectivity to PO (>95%). Kinetic data were fit to a power-rate law and gave the following expression: rPO = k(H2)0.54(O2)0.24(C3H6)0.36. The fractional orders in hydrogen, oxygen, and propylene indicated that these reactants interacted with the catalyst to form species that led to the final PO product. The catalyst likely operated by the commonly accepted mechanism of hydrogen peroxide production on gold sites, and epoxidation on titanium centers. Carbon dioxide was formed primarily from further oxidation of PO rather than the oxidation of propylene, while water was produced from the reaction of hydrogen and oxygen.  相似文献   

12.
The catalytic reduction of NOx in the typical operation temperatures and oxygen concentrations of diesel engines has been studied in the presence of V3W9Ti in a tubular flow reactor. The results have shown that the selective catalytic reduction is strongly affected by the oxygen concentration in low temperature range (150–275 °C). At higher temperatures, the reaction becomes independent of the O2 concentration. The rate of the selective catalytic reduction of NO with ammonia may be considerably enhanced by converting part of the NO into NO2. DRIFT measurements have shown that NH3 and NO2 are adsorbed on the catalyst surface on the contrary of NO. The experiments have shown that the decrease in N2 selectivity of the SCR reaction is mainly due to the SCO of ammonia and to the formation of nitrous oxide.  相似文献   

13.
This study addresses the catalytic reaction of NOx and soot into N2 and CO2 under O2-rich conditions. To elucidate the mechanism of the soot/NOx/O2 reaction and particularly the role of the catalyst -Fe2O3 is used as model sample. Furthermore, a series of examinations is also made with pure soot for reference purposes. Temperature programmed oxidation and transient experiments in which the soot/O2 and soot/NO reaction are temporally separated show that the NO reduction occurs on the soot surface without direct participation of the Fe2O3 catalyst. The first reaction step is the formation of CC(O) groups that is mainly associated with the attack of oxygen on the soot surface. The decomposition of these complexes leads to active carbon sites on which NO is adsorbed. Furthermore, the oxidation of soot by oxygen provides a specific configuration of active carbon sites with suitable atomic orbital orientation that enables the chemisorption and dissociation of NO as well as the recombination of two adjacent N atoms to evolve N2. Moreover, carbothermal reaction, high resolution transmission electron microscopy and isotopic studies result in a mechanistic model that describes the role of the Fe2O3 catalyst. This model includes the dissociative adsorption of O2 on the iron oxide, surface migration of the oxygen to the contact points of soot and catalyst and then final transfer of O to the soot. Moreover, our experimental data suggest that the contact between both solids is maintained up to high conversion levels thus resulting in continuous oxygen transfer from catalyst to soot. As no coordinative interaction of soot and Fe2O3 catalyst is evidenced by diffuse reflectance infrared Fourier transform spectroscopy a van der Waals type interaction is supposed.  相似文献   

14.
C. Martín  G. Solana  P. Malet  V. Rives   《Catalysis Today》2003,78(1-4):365-376
WO3/Nb2O5-supported samples prepared by impregnation are characterised by X-ray diffraction (XRD), Raman spectroscopy and X-ray absorption spectroscopy (XAS) at the W–L3 absorption edge, as well as temperature programmed reduction (TPR) and FT-IR monitoring of pyridine adsorption. Results are compared with those obtained for WO3/Al2O3 samples prepared in the same conditions, showing that niobia is able to disperse tungsta better than alumina does. Formation of a crystalline WO3 needs larger tungsten contents on niobia than on alumina, since tungsten solution into niobia is easier than into alumina. Raman and XAS spectra recorded under ambient conditions suggest that similar WOx species are formed on both supports at tungsten contents 0.5–1 theoretical monolayers; however, TPR results for the low tungsten loaded samples indicate that, when reduction starts (always at temperatures higher than 700 K under H2/Ar flow) there is a larger concentration of tetrahedral [WO4] species on alumina, than on niobia. Samples with low tungsten loading have been tested in isopropanol decomposition and ethylene oxidation, following both processes by FT-IR of adsorbed species up to 673 K. Results show that adsorption of ethylene on WO3/Nb2O5 yields acetaldehyde and acetate at 473 K, while this adsorption is non-reactive either on the supports or on WO3/Al2O3. Isopropanol adsorbs dissociatively on both supports, leading to acetone and propene formation on tungsta–niobia, but only propene on tungsta–alumina, probably due to the larger reducibility of the tungsten-containing phases.  相似文献   

15.
Pt–Ba–Al2O3 active and selective for NOx storage and selective reduction to N2 has been prepared and tested. Characterization of the parent Al2O3, Pt–Al2O3 and Ba–Al2O3 materials, as well as of Pt–Ba–Al2O3 catalyst in the oxidized, reduced and sulphated state has been performed by FT-IR spectroscopy of low-temperature adsorbed carbon monoxide and of adsorbed acetonitrile. XRD, TEM and XPS analyses have also been performed. Evidence for the predominance of Ba species, which are highly dispersed on the alumina support surface, and may be carbonated or sulphated, has been provided. Competitive interaction of Pt and Ba species with the surface sites of alumina has also been found.  相似文献   

16.
In this study, a novel bifunctional catalyst IrFe/Al2O3, which is very active and selective for preferential oxidation of CO under H2-rich atmosphere, has been developed. When the molar ratio of Fe/Ir was 5/1, the IrFe/Al2O3 catalyst performed best, with CO conversion of 68% and oxygen selectivity towards CO2 formation of 86.8% attained at 100 °C. It has also been found that the impregnation sequence of Ir and Fe species on the Al2O3 support had a remarkable effect on the catalytic performance; the activity decreased following the order of IrFe/Al2O3 > co-IrFe/Al2O3 > FeIr/Al2O3. The three catalysts were characterized by XRD, H2-TPR, FT-IR and microcalorimetry. The results demonstrated that when Ir was supported on the pre-formed Fe/Al2O3, the resulting structure (IrFe/Al2O3) allowed more metallic Ir sites exposed on the surface and accessible for CO adsorption, while did not interfere with the O2 activation on the FeOx species. Thus, a bifunctional catalytic mechanism has been proposed where CO adsorbed on Ir sites and O2 adsorbed on FeOx sites; the reaction may take place at the interface of Ir and FeOx or via a spill-over process.  相似文献   

17.
The decomposition of methane and its conversion into higher hydrocarbons have been investigated on supported Ir catalysts. The effects of temperature, flow rate and support materials have been examined. The interaction of CH4 with iridium has been observed at as low a temperature as 473 K. As a result, hydrogen, a small amount of ethane and surface carbonaceous species were produced. With increase of the temperature, the extent of the decomposition significantly increased. At 773 K, the initial conversion varied between 2.0–5.0%, which decreased to low values in a short reaction time. Taking into account the dispersion of Ir, the most effective sample in the decomposition of CH4 was Ir/MgO. By means of Fourier transform infrared spectroscopy adsorbed CH3 was identified as a reaction intermediate of methane decomposition. Temperature programmed reactions revealed that the reactivity of surface carbon produced in the decomposition of CH4 depends on the nature of the support. Hydrogenation of the most reactive carbonaceous species led to the production of aliphatic hydrocarbons up to six carbon atoms.  相似文献   

18.
A transient kinetic model was developed for the CO oxidation by O2 over a Pt/Rh/CeO2/γ-Al2O3 three-way catalyst. The experiments which were modelled consisted of periodically switching between a feed stream containing 0.5 mol% CO in helium and a feed stream containing 0.5 mol% O2 in helium, with a frequency from 0.1 to 0.25 Hz, in the temperature range 393–433 K. These temperatures are representative for cold start conditions. The transient experiments yield information about the reaction mechanism. A transient kinetic model based on elementary reaction steps was developed which describes the experimental data in the above mentioned range of experimental conditions adequately. The kinetic model consists of two monofunctional and one bifunctional contribution. The first monofunctional reaction path comprises competitive adsorption of CO and O2 on the noble metal surface followed by a surface reaction. The second monofunctional reaction path consists of CO adsorption on an oxygen atom adsorbed on the noble metal surface, followed by a reaction to CO2. The bifunctional reaction path involves a reaction between CO adsorbed on the noble metal surface and oxygen from ceria at the noble metal/ceria interface. Also, reversible adsorption of carbon dioxide on the support is taken into account. The kinetic parameters, i.e. preexponential factors and activation energies for the different elementary reaction steps, and the oxygen storage capacity were estimated using multi-response non-linear regression analysis of the oxygen, carbon monoxide and carbon dioxide outlet concentrations.  相似文献   

19.
The selective catalytic reduction (SCR) of nitrogen oxides (NOx) by propane in the presence of H2 on sol–gel prepared Ag/Al2O3 catalysts (0.5–5 wt.% Ag) was investigated. It was confirmed that hydrocarbon-assisted SCR of NOx is remarkably enhanced by co-feeding hydrogen to a lean exhaust gas mixture (λ>1), attaining considerable activity within a wide temperature window (470–825 K). The samples had marginal activity at 575 K without co-fed H2, but achieved up to 60% NOx conversion in the presence of H2 at a space velocity of 30,000 h−1. NO2 as NOx feed component is not converted to N2 by C3H8 to a substantial extent under lean conditions. This points to an activation route of NO through direct conversion to adsorbed nitrite/nitrate or to a dissociation of NO over Ag0, formed through short-term reduction by H2. The nature of Ag species was characterized by X-ray diffraction, temperature-programmed reduction, pulse thermoanalytical measurements, electron microscopy and FTIR spectroscopy. It could be shown that Ag2O nano-sized clusters are predominantly present on all samples, whereas formation of silver aluminate could not be confirmed. Nano-sized Ag2O clusters can reversibly be reduced/reoxidized by H2. A silver loading higher than 2 wt.% leads to a part of Ag2O particles, which are thermally decomposed during calcination at 800 K or higher. The catalytic role of this metallic silver is still unclear. Formal kinetic analysis of catalytic data revealed that the activation energy of the overall reaction is significantly lowered in the presence of H2. The presence of water does not change the activation energy. It is concluded that hydrogen reduces the nano-sized Ag2O clusters to Ag0 on a short-term scale. Zero-valent silver promotes a dissociation pathway of NOx conversion. The fact that more oxidized ad-species (nitrite/nitrate) are observed in the presence of H2 is attributed to a dissociative activation of gas-phase oxygen on Ag0.  相似文献   

20.
Ni/Ce–ZrO2 showed good methane steam reforming performance in term of stability toward the deactivation by carbon deposition. It was first observed that the catalyst with Ce/Zr ratio of 3/1 showed the best activity among Ni/Ce–ZrO2 samples with the Ce/Zr ratios of 1/0, 1/1, 1/3, and 3/1. Temperature-programmed oxidation (TPO) experiments indicated the excellent resistance toward carbon formation for this catalyst, compared to conventional Ni/Al2O3; the requirement of inlet H2O/CH4 to operate without the formation of carbon species is much lower. These benefits are related to the high oxygen storage capacity (OSC) of Ce–ZrO2. During the steam reforming process, in addition to the reactions on Ni surface (*), the redox reactions between the gaseous components present in the system and the lattice oxygen (Ox) on Ce–ZrO2 surface also take place. Among these reactions, the redox reactions between the high carbon formation potential compounds (CH4, CHx-*n and CO) and the lattice oxygen (Ox) can prevent the formation of carbon species from the methane decomposition and Boudard reactions, even at low inlet H2O/CH4 ratio (1.0/1.0).

Regarding the intrinsic kinetic studies in the present work, the reaction order in methane over Ni/Ce–ZrO2 was observed to be approximately 1.0 in all conditions. The dependence of steam on the rate was non-monotonic, whereas addition of oxygen as an autothermal reforming promoted the rate but reduced CO and H2 production selectivities. The addition of a small amount of hydrogen increased the conversion of methane, however, this positive effect became less pronounced and the methane conversion was eventually inhibited when high hydrogen concentration was added. Ni/Ce–ZrO2 showed significantly stronger negative impact of hydrogen than Ni/Al2O3. The redox mechanism on ceria proposed by Otsuka et al. [K. Otsuka, T. Ushiyama, I. Yamanaka, Chem. Lett. (1993) 1517; K. Otsuka, M. Hatano, A. Morikawa, J. Catal. 79 (1983) 493; K. Otsuka, M. Hatano, A. Morikawa, Inorg. Chim. Acta 109 (1985) 193] can explain this high inhibition.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号