首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以聚乙二醇为分散剂,采用共沉淀法制备Tm:Yb3Sc Al4O12纳米粉体。最佳工艺条件为:煅烧温度1 000℃,煅烧时间2 h。通过对样品的扫描电子显微镜分析,得到纳米粉体平均粒径约为90 nm。测试了样品的激发和发射光谱,结果表明:在360 nm处激发峰最强,对应Tm3+的1D2→3H6能级跃迁;最强发射峰位于456 nm处,对应于1G4→3H6能级跃迁。测试了样品的上转换光谱,得到掺杂Tm3+的摩尔分数为2%时样品的发光强度较好,讨论了上转换发光机理,红光和绿光的发射是双光子吸收过程,蓝光发射源于1个三光子吸收过程。  相似文献   

2.
Bi3+激活的Sr2SiO4材料发光特性研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备了Sr2SiO4:Bi3+发光材料.X射线衍射谱显示其为纯相的Sr2SiO4晶体.测量了Sr2SiO4∶ Bi3+材料的激发与发射光谱,结果显示,材料的发射光谱为一单峰宽带,主峰位于441nm处;监测441nm发射峰,所得材料的激发光谱为一主峰位于376nm处的单峰宽带.研究了Bi3+掺杂浓度对Sr2SiO4∶ Bi3+材料发射光谱的影响,结果显示,随Bi3+掺杂浓度的增大,Sr2SiO4∶ Bi3+材料的发射光谱峰值强度表现出先增大后减小的趋势,在Bi3+掺杂物质的量浓度为3%时,可获得最大的峰值强度.加入电荷补偿剂Li+、Na+和K+,均提高了Sr2SiO4∶ Bi3+材料发射光谱峰值强度,其中以加入Li+的情况最明显.  相似文献   

3.
以Na2MoO4溶液为沉淀剂,采用共沉淀法制备了前驱体,在空气中经850~950℃煅烧,合成了Sr1-xEuxMoO4 粉体.利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、荧光光谱仪对样品的结构、形貌及发光性能进行了表征.探讨了其合成工艺条件,确定了最佳烧结温度850℃,烧结时间为3h,并确定了当x=0.30时样品的相对发光亮度达到最大值.红色荧光粉的激发峰分别位于394,464 nm,发射光谱中在591 nm和617 nm处有很强的发射峰,其中最强发射峰位于617 nm左右,与Eu3+的SD0→7F2跃迁对应,可用于LED,提高其显色指数.  相似文献   

4.
通过化学共沉淀法合成了不同Pr3+掺杂浓度的Sr WO4荧光材料,运用X射线衍射仪、扫描电镜测试手段对样品进行了结构与形貌表征。测量了各样品的发射和激发光谱,研究了激活剂Pr3+的摩尔分数对发光强度的影响,确定了Pr3+掺杂钨酸锶荧光材料最佳摩尔分数为7%,Sr WO4:Pr3+荧光材料的发射光谱由1个宽带峰和一些窄带峰组成,可以被紫外光有效地激发,300~500 nm处的宽带峰是WO2-4的自激发发射,即W6+→O2-电荷迁移态的发射,峰值位于425 nm处。500~700 nm处的窄带发射峰分别归属于Pr3+的1D2→3H4、3P0→3H6和3P0→3F2跃迁,在644 nm(3P0→3F2)处得到最强的红光发射。随着掺杂摩尔分数的增加,发光强度降低,发生了浓度猝灭。  相似文献   

5.
采用高温固相法合成钒基荧光材料YVO4:Ga3+,其最佳掺杂浓度是2%,最宜煅烧温度为1100℃。用XRD,SEM以及荧光光谱等手段对所合成的荧光粉进行了表征,结果表明,样品在近紫外光254nm激发下,产生位于350~700nm的宽带发射峰。其中,镓离子浓度逐渐增加到2%时,样品的荧光发射主峰由440nm平移到470nm。  相似文献   

6.
采用高温固相法合成了白色长余辉发光材料Y2O2S∶Tb3+,Sr2+,Zr4+,利用X射线衍射、扫描电子显微镜、荧光分光光度计、照度计和热释光谱仪研究了煅烧温度对样品物相、形貌及发光性能的影响.结果表明:在950℃煅烧时,样品为Y2O3与Y2O2S的混合相,其中Y2O3为主相:在1000和1 050℃煅烧时为纯的Y2O2S相;当温度高于1 050℃时.再次出现Y2O3相;用288 nm波长光激发样品,Tb3+发射峰形状与位置不变,其中位于417nm蓝光与544nm黄绿光主发射峰归属于Tb3+的5D3→7F5与5D4→7F5跃迁;当煅烧温度为1 000℃时,样品的能级陷阱深度为0.64 eV,余辉时间为160s(≥1mcd/m2).  相似文献   

7.
以H3BO3作助熔剂,采用溶胶–凝胶法合成了Na2Zn Si O4:Eu3+红色荧光粉。用X射线衍射、荧光光谱分析对样品的结构及发光特性进行了表征,探讨了H3BO3助熔剂添加量和掺Eu3+量对Na2Zn Si O4:Eu3+发光性能的影响。结果表明:所得样品属于单斜晶系,样品的激发光谱主要由一系列线状谱峰组成,激发主峰为465 nm,归属于Eu3+的7F0→5D2特征跃迁。在波长为465 nm蓝光激发下发射红光,发射峰分别为578、591、613、653和701 nm,对应于Eu3+的5D0→7FJ(J=0,1,2,3,4)跃迁,发射主峰位于613 nm(5D0→7F2)处。当Eu3+和H3BO3的摩尔掺杂量分别为5%和0.8%时,样品的荧光发光强度最大。Na2Zn Si O4:Eu3+有望成为蓝光激发的白光发光二极管(w-LED)用红色荧光粉。  相似文献   

8.
采用凝胶-燃烧法合成了LiY(MoO_4)_2:Er~(3+)绿色荧光粉,借助XRD、FE-SEM、荧光光谱仪对样品的晶体结构、形貌、发光特性等进行了分析。结果表明:所得LiY(MoO_4)_2:Er~(3+)样品为四方白钨矿型结构,平均粒径为500 nm左右;样品的发射光谱由532 nm和553 nm的两个较强绿光发射峰组成,CIE1931色坐标为(0.2502,0.7272),位于绿光区;Er~(3+)最佳掺杂量为x=0.050 mol;最佳点火温度为700℃。  相似文献   

9.
利用溶胶–凝胶结合高温煅烧法制备了绿色长余辉发光材料α-Zn3(PO4)2:Mn2+,Na+。通过X射线衍射对产物的相结构进行分析,通过荧光光谱和热释光谱研究其发光本质,并探究了Na+掺杂量对余辉性质的影响。结果表明:制备的样品的结构与α-Zn3(PO4)2相同。样品发射峰位于548 nm处,为绿色发光材料,归属于Mn2+的4T1g–6A1g跃迁。当Na+掺杂量为4%时,样品的发光性能最佳。样品经过紫外光照射后,在暗室中目测其余辉时间约2 h。热释光谱分析表明,掺杂Na+可以增加晶体中Vo¨氧空位缺陷浓度。Vo¨氧空位缺陷浓度的提高有利于捕获更多的激发态电子,延缓激发态电子跃迁回基态,从而达到延长样品的余辉时间。  相似文献   

10.
蓝色荧光粉Sr_2Al_2SiO_7:Ce~(3+)的制备与发光性能   总被引:3,自引:1,他引:2  
利用高温固相法在H2和N2还原气氛中制备了Ce3+掺杂的Sr2Al2SiO7蓝色荧光粉。通过X射线衍射和扫描电子显微镜研究了荧光粉的组成和表面形貌。探讨了Ce3+含量,锻烧温度等对合成样品发光性能的影响。结果表明:所制得的样品为Sr2Al2SiO7晶粒;样品晶粒均匀,粒径为2.0μm左右。掺0.03(摩尔分数)Ce3+的样品,在1400℃锻烧10h样品的发光强度最高。Sr2Al2SiO7:Ce3+的激发光谱和发射光谱在350~420nm和450~650nm范围内分别呈现1个宽峰;激发峰值位于362nm处,发射峰值位于478nm处。Sr2Al2SiO7:Ce3+可被紫外光有效激发,并且发出很强的蓝光,是一种很好的用于紫外光芯片基的白光发光二极管的荧光粉。  相似文献   

11.
Sr2SiO4:Sm3+红色荧光粉的发光特性   总被引:1,自引:0,他引:1  
用高温固相法合成了Sr2SiO4:Sm3 红色荧光粉,并研究粉体的发光性质.发射光谱由位于红橙区的3个主要荧光发射峰组成,峰值分别位于570,606nm和653nm,对应了Sm3 的4G5/2→6H5/2,4G5/2→6H7/2和4G5/2→6H9/2特征跃迁发射,606nm的发射最强.激发光谱表现从350 nm到420nm的宽带,可以被近紫外光辐射二极管(near-ultraviolet light-emitting diodes,UVLED)管芯产生的350~410 nm辐射有效激发.研究了Sm3 掺杂和不同电荷补偿剂对样品发光亮度的影响,Sm3 掺杂摩尔分数为6%、电荷补偿剂为Cl-时的效果最好.Sr2SiO4:Sm3 是一种适用于白光LED的红色荧光粉.  相似文献   

12.
用H3BO3作为助熔剂、尿素为燃料,采用燃烧法在较低的起始温度(650℃)下制备了的纳米级SrBPO5∶Sm3+红色荧光粉。研究了该荧光粉样品的相结构、形貌和发光特性。结果表明:SrBPO5∶Sm3+样品属于三方晶系,空间群为P3121;该荧光粉平均粒径为200nm、分散性较好。样品在近紫外光404nm的激发下发射红光,发射主峰位于558、596和645nm处,分别对应于Sm3+的4 G5/2→6 H5/2、4 G5/2→6 H7/2和4 G5/2→6 H9/2的跃迁;当Sm3+的最佳摩尔掺杂量为10%,对于既可作为助熔剂又是原料的H3BO3过量0.8%时,样品的发射峰强度最强。SrBPO5∶Sm3+有望成为近紫外激发的白光LED用新型红色荧光粉。  相似文献   

13.
SrS:Eu,Sm的制备与光谱性能   总被引:2,自引:1,他引:1  
采用高温固相法制备了SrS:Eu,Sm光激励发光材料.研究了稀土掺杂量对样品光激励发光性能的影响.XRD分析表明,在1000℃灼烧1 h的样品为SrS面心立方结构,晶格常数α=0.6020 nm;激发光谱表明,样品在紫外和可见光均有较强激发峰;样品的荧光发射光谱由3个发射峰组成,其主峰位于602.1 nm.红外光激励发射光谱是峰值位于602 nm附近的宽带谱,样品的光激励激发光谱是峰值位于1046 nm宽带谱,带宽在800~1400 nm.最佳稀土掺杂量为0.15%.  相似文献   

14.
水热法合成CaCO_3:Eu~(3+)红色荧光粉(英文)   总被引:2,自引:0,他引:2  
采用低温水热法在150℃不同时间反应下合成了一系列红色荧光粉CaCO3:1%(inmole)Eu3+。利用扫描电子显微镜、X射线衍射和荧光光谱仪等分别对样品的形貌、结构和发光性能进行了表征。结果表明:样品具有立方体的方解石型和针状的文石型结构,其文石型与方解石型的摩尔比随着反应时间的延长而增加。当反应时间达到24h时,样品的发光强度最高,此时样品为针状的无团聚的文石型结构。Eu3+作为发光中心进入到不同晶型的CaCO3晶格中并占据非中心对称格位。样品的277nm附近的最强激发峰是由Eu3+-O2-电荷迁移跃迁引起的,属于宽带激发;另外,在300~550nm处存在窄的激发峰,归属于Eu3+的4f-4f激发跃迁。样品的最大发射峰值均位于614nm附近,属于红色发光,对应于Eu3+的电偶极跃迁5D0→7F2。  相似文献   

15.
采用高温固相法在强还原气氛下合成了Ca_(8–x)Mg(SiO_4)_4Cl_2:xEu~(2+)氯硅酸镁钙荧光粉。通过X射线衍射、荧光光谱和扫描电子显微镜对样品的晶体结构和发光特性进行了表征,探讨了Eu~(2+)掺杂量和助熔剂对发光性能的影响。结果表明:该荧光粉属于面心立方结构、Fd3空间群。样品的激发光谱和发射光谱均为宽带谱,位于451~463 nm范围的激发峰强度最大;在波长为458 nm蓝光激发下样品发射蓝绿光,发射峰在508~511 nm范围。当Eu~(2+)掺杂量为0.13时样品的发光强度最佳;分别加入摩尔分数为0.2%的Ca F_2、Ba F_2、Ba Cl_2助熔剂,能提高荧光粉的激发和发射光谱强度,且加入Ba Cl_2制备的荧光粉的发射光谱强度提高12%。考察了该材料在白光LED中的封装应用性能,结果显示蓝绿色荧光粉能够有效提升白光LED的显色性,显色指数达到95以上。  相似文献   

16.
江枫  吴浪  雷杰  张海洋  康泽  王宾  姚颖 《玻璃》2020,(2):9-16
研究了硼硅酸盐玻璃主要成分(SiO2、Na2O、B2O3)对硫酸钡(BaSO4)热稳定性的影响,分析BaSO4分别与SiO2、Na2O、B2O3的混合物在不同温度(800~1 200℃)煅烧后的物相组成、显微结构、硫含量和拉曼光谱。结果表明:当BaSO4:SiO2摩尔比为7.5:92.5 (样品A)时,在温度低于1 200℃煅烧后其物相均为BaSO4和SiO2,温度达到1 200℃时出现了少量硅钡石(BaSi2O5)相;当BaSO4:SiO2:Na2O为7:86:7 (样品B)时,在800℃煅烧后即出现了少量BaSi2O5相,当温度达到1200℃时样品主要物相为BaSi2O5和方石英,硫含量明显减少;当BaSO4:SiO2:Na2O:B2O3为5.5:67.5:6.5:21.5 (样品C)时,在800~1 200℃均为BaSO4和SiO2,在1 200℃保温2h后,BaSO4和SiO2的衍射峰基本消失。低熔点的Na2O和B2O3的引入促进了BaSO4的分解,在1 200℃煅烧后,样品A、B、C中SO4四面体的拉曼特征峰依次减弱。  相似文献   

17.
殷倩倩  宋超  唐峰  彭子飞 《广州化工》2012,(3):54-56,66
采用高温固相法制备荧光材料CaSrNb2O6:Bi3+,其中Bi3+的最佳掺杂浓度是0.2%,Sr2+的最佳掺杂浓度为0.8%,样品的最宜煅烧温度为1300℃,最佳保温时间为1.5 h,用XRD,SEM以及荧光光谱等手段对所合成的荧光粉进行了表征。结果表明,样品在近紫外光315 nm激发下,产生位于350~600 nm的宽带发射峰。  相似文献   

18.
以柠檬酸为燃烧剂,采用柠檬酸燃烧法制备Er,Yb:YSAG纳米粉体。通过对不同煅烧温度下样品的X射线衍射和扫描电子显微镜分析,确定最佳煅烧温度为900℃。测试了室温条件下样品的激发和发射光谱。结果表明:在381 nm处激发峰最强,对应Er~(3+)的~4I_(15/2)→~2H_(9/2)能级跃迁;最强发射峰在1 547 nm处,对应Er~(3+)的~4I_(13/2)→~4I_(15/2)能级跃迁。测试了样品的上转换荧光光谱,研究了Er~(3+)和Yb~(3+)掺杂量对样品发光强度的影响,得到了Er~(3+)和Yb~(3+)的最佳掺杂量分别为3%和9%,讨论了绿光、红光的发光跃迁机制,验证样品发光为双光子过程。  相似文献   

19.
CdSe:Mn量子点的制备及其光致发光特性研究   总被引:1,自引:1,他引:0  
采用低温水热法,以柠檬酸为配位稳定剂制备了Mn2 掺杂的CdSe量子点.用紫外吸收光谱、荧光发射光谱、X射线衍射(XRD)、透射电镜(TEM)等进行了表征.研究了Mn2 掺杂浓度对量子点的结构及其光致发光性能的影响.光致发光光谱表明,当粒子尺寸为3 nm时,在580 nm处出现了属于Mn2 的4T1-6A1跃迁的特征发射峰.当激发波长为480nm时,在630nm处出现了CdSe的表面缺陷发射峰.随着Mn2 的掺杂浓度增大,CdSe:Mn表面陷阱态发射峰位置没有显著红移.TEM分析结果显示,CdSe:Mn量子点为单分散的,尺寸约为5 nm的圆形纳米粒子.当Mn2 离子掺杂浓度不大于5%时,Mn2 取代表面晶格中的Cd2 离子位置形成辐射性表面缺陷,产生表面陷阱态发射.吸收光谱显示,随着量子点变小,吸收带边发生蓝移,显示明显的量子尺寸效应.  相似文献   

20.
以活性炭粒为吸收剂采用微波辐射法合成了SrMoO4∶Tb3+绿色发光材料。用X射线粉末衍射仪、荧光分光光度计对样品进行了分析和表征,探讨了微波反应时间、Tb3+的摩尔掺杂量、助熔剂等对样品结构和发光性质的影响。结果表明:所合成的SrMoO4∶Tb3+晶体结构与SrMoO4相似,属四方晶系结构,I41/a空间群。样品的激发光谱是由位于200~350nm的1个宽带和350~500nm的一系列尖峰构成。宽带吸收与Mo--O的电荷转移和Tb3+的4f8--4f7 5d1跃迁过程有关,最强峰位于287nm左右。350nm以后的吸收峰是由于Tb3+的4f--4f跃迁引起的。发射光谱主要由4个发射峰组成:主峰位于544nm处,属于Tb3+的5 D4→7 F5跃迁发射;另外3个弱发射峰位于490、587、622nm处,分别属于Tb3+的5 D4→7 F6、5 D4→7 F4、5 D4→7 F3跃迁。当反应时间为30min,微波功率为中高火(560W),Tb3+摩尔量为0.06,助熔剂H3BO3的用量为4%(质量分数)时,样品的发光强度最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号