首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
《粉煤灰》2015,(5)
研究了混凝土中掺入低品位粉煤灰和钢渣粉后其强度变化规律。结果表明:低品位粉煤灰的细度越大对混凝土后期强度的增长更有利,但是高细度粉煤灰会使混凝土早期强度减低。相比只掺入低品位粉煤灰,同时掺入钢渣粉和低品位粉煤灰的混凝土强度可以明显提高,并且随着粉煤灰细度的增加,混凝土强度提高效果越明显。但是钢渣粉掺量对混凝土强度影响不大。  相似文献   

2.
钢渣粉煤灰复掺对水泥性能的影响   总被引:1,自引:0,他引:1  
运用正交设计实验方法研究了钢渣粉煤灰的复掺比例、细度及石膏的种类等对复合水泥性能的影响,并对其组成进行了优化设计.结果表明,在矿渣掺量一定时,粉煤灰(FA)的细度是影响其强度的关键因素,其次为钢渣粉煤灰的复配比例,而钢渣(SS)的细度及石膏的种类对其影响较小.经过优选后的配比为:钢渣和粉煤灰的配合比为21:9,钢渣细度为447 m2/kg,粉煤灰细度为400m2/kg,石膏为3份天然二水石膏混合2份脱硫石膏.  相似文献   

3.
矿渣-钢渣复合水泥的性能研究   总被引:1,自引:0,他引:1  
试验利用矿渣和钢渣作为配制复合水泥的辅助性胶凝材料,研究了矿渣、钢渣细度和复合比例对复合水泥强度的影响,并从颗粒堆积和复合胶凝效应的角度探讨了矿渣-钢渣在复合水泥中的作用机理。试验结果表明:在矿渣与钢渣组成的复合体系中,矿渣细度决定了复合水泥的强度,矿渣越细,复合水泥强度越高;在辅助性胶凝材料掺量一定的情况下,矿渣占的比例越高,复合水泥的强度越高;在适宜的复合比例下,用矿渣和钢渣混合配制的复合水泥28d抗压强度高于纯水泥的28d抗压强度。  相似文献   

4.
王建国  董涛  王晴 《粉煤灰》2012,(6):21-23
钢渣可以用作为水泥混合材料,对水泥性能无不良影响。激发剂对掺入钢渣的水泥早期强度有增强作用。较高强度试样的最佳配比为3 d抗压强度:掺入钢渣10%(细度500 m2/kg)、明矾4%、芒硝4%,与空白试样相比,3 d抗压强度提高了12%。在此试验中各个因素对强度的影响大小为:钢渣掺入量>钢渣细度(比表面积)>芒硝掺量>明矾掺量。  相似文献   

5.
研究通过掺加助磨剂粉磨钢渣的方法,提高钢渣微粉的细度和活性,达到高效利用钢渣目的.结果表明,随着钢渣掺量的增加,钢渣复合水泥的抗折强度呈先上升后下降趋势,掺量为30%时抗折强度最高.钢渣复合水泥的28 d抗压强度直线下降,3 d抗压强度先增加后再下降,30%掺量时强度最高,达4.75 MPa.结合实际经济效益,最终确定钢渣复合水泥的配比为熟料-65%、钢渣-30%、石膏-5%,助磨剂A掺量为0.1%时效果最好,相比无助磨剂的钢渣复合水泥,细度降低了49.0%,且28 d抗压强度提高了6 MPa.  相似文献   

6.
以钢渣为主要原料制备了钢渣碳化砖,分析了其在碱激发条件下的碳化效果影响因素。结果表明,钢渣因含有f-CaO、硅酸二钙等可碳化组分而表现为更高的CO_2吸收量,是适宜的原材料。Na_2CO_3激发能力恰当且可提升碳化效果,是适宜的激发剂。掺用Na_2CO_3时,碳化强度随钢渣用量增加而增大,但钢渣用量达到1 800 kg/m~3时CO_2吸收量显著下降;强度几乎不受钢渣细度影响,CO_2吸收量随钢渣细度增加而增加,但细度超过440 m~2/kg时CO_2吸收量增加变缓;碳化砖的强度随骨料用量增加而增大,但CO_2吸收量变化不明显。占钢渣7%~13%的水用量可使试样具有足够好的碳化效果,但水用量为11%、13%时CO_2吸收量下降。7%水用量时钢渣砖碳化后强度增长20.0 MPa以上,在0.75%Na_2CO_3对钢渣的激发作用并协同碳化作用条件下,可使强度再增长10.0 MPa、CO_2吸收量再增加1%以上;然而当Na_2CO_3用量超过1%,增强作用变弱、CO_2吸收量下降。钢渣碳化砖的适宜配比为:钢渣(比表面积440 m~2/kg)1640 kg/m~3,骨料328 kg/m~3 (占钢渣的20%,下同),水115 kg/m~3 (7%),Na_2CO_3 13.12 kg/m~3 (0.75%)。该配比制备的试样碳化后其抗压强度、CO_2吸收量可分别达到39.2 MPa、9.15%。在碳化过程中生成更多且沉积于孔洞的碳酸钙,获得更致密基体,是碱激发协同碳化增强的主要原因。  相似文献   

7.
基于钢渣的活性效应和微集料效应研究了不同掺量钢渣对混凝土抗压强度和抗折强度的影响,通过加速碳化试验和抗冻性试验探究了钢渣混凝土的抗碳化性能和抗冻性.采用X-CT技术探究了钢渣混凝土内部的孔结构.结果表明:掺加10%钢渣混凝土的抗压强度和抗折强度最大,掺加30%钢渣混凝土的抗压强度和抗折强度最小.当碳化到56 d时,掺加30%钢渣的混凝土的碳化深度已达12.5 mm;冻融循环到180 d,掺加30%钢渣混凝土的相对动弹性模量降至88.7%.  相似文献   

8.
将400、450、500m^2/kg三个细度的钢渣微粉与细度为450m^2/kg的矿渣复合成为双掺料,配制成复合水泥。试验表明:该水泥的标准稠度需水量随钢渣掺量增加呈减小的趋势,终凝时间则逐渐延长。当钢渣掺量不变时,提高钢渣微粉的细度,水泥的标稠需水量变化不大。随钢渣掺量增加,水泥各个龄期的抗压和抗折强度呈下降趋势。在相同的掺量条件下,钢渣粉细度为400m^2/kg比表面积、掺量为10%时,28d抗压强度明显降低。提高钢渣粉细度,28d抗压和抗折强度总体上呈增加的趋势。将450m^2/kg比表面积的钢渣微粉与矿渣微粉复合为双掺料,是经济可行的技术方案。  相似文献   

9.
钢渣混凝土与普通混凝土的强度对比研究   总被引:2,自引:0,他引:2  
通过实验,研究了碎石混凝土与钢渣混凝土的力学强度,探讨了不同配比条件下钢渣与碎石混凝土强度的变化规律,以及粉煤灰对强度的影响特点,为钢渣桩的推广应用提供基础数据。  相似文献   

10.
磨细钢渣对混凝土力学性能及安定性影响研究   总被引:10,自引:0,他引:10  
孙家瑛 《粉煤灰》2003,15(5):7-9
本文研究了磨细钢渣等量替代部分水泥对混凝土力学性能和安定性的影响,并探讨了产生影响的机理。实验结果表明钢渣等量替代部分水泥时,混凝土早期强度随钢渣掺量增加而下降,特别是当掺量大于20%,其强度降低更为明显。此外无论钢渣粉掺量多大,混凝土的安定性均能满足要求。  相似文献   

11.
高英力  马保国  岳成军 《水泥》2006,(12):16-18
通过大量试验在水泥熟料中复合掺入超细粉煤灰及磨细钢渣粉,配制了用于公路路面水泥混凝土工程的复合硅酸盐水泥,重点改善道路水泥的抗折强度、耐磨性能以及收缩抗裂性能。结果表明,随着超细粉煤灰及磨细钢渣粉的掺入,所配制的水泥胶砂强度及耐磨性均满足425号道路硅酸盐水泥要求,与基准水泥相比,规定龄期的收缩变形均显著降低,圆环法抗裂试验结果也表明水泥抗裂性能得到大幅度增强。  相似文献   

12.
钢渣粉和粉煤灰对钢渣混凝土力学性能的影响特点   总被引:2,自引:0,他引:2  
探讨钢渣粉和粉煤灰等量取代水泥后钢渣混凝土的力学属性变化特点和规律。实验对比表明 :与强度等级为 32 .5的纯水泥钢渣混凝土对比 ,掺入钢渣粉的砼强度略有降低 ,但能改善混凝土的和易性。掺入粉煤灰将增大混凝土的粘聚性和可塑性 ,改善混凝土的和易性 ,减小混凝土的膨胀性。  相似文献   

13.
将钢渣、矿渣微粉与废弃混凝土碎料混拌制备钢渣-杂填土基层,并对其性能开展研究。体积安定性试验表明,矿渣微粉具有明显抑胀作用,掺入50%(质量分数,下同)钢渣、50%杂填土以及外掺钢渣质量30%矿渣微粉的试件的10 d高温水浴膨胀率仅为1.32%,而未掺矿渣微粉的试件3~5 d膨胀率均超过2%限值。7 d无侧限抗压强度和28 d劈裂强度正交试验表明:7 d无侧限抗压强度、28 d劈裂强度影响因素大小顺序为钢渣、水泥掺量、混凝土碎料占比、土壤固化剂;各组试件中7 d无侧限抗压强度、28 d劈裂强度最大值分别为12.41 MPa、2.24 MPa;钢渣-杂填土基层最佳配比为50%钢渣、50%杂填土(m(混凝土碎料)∶m(素土)=6∶4),外掺钢渣质量40%的矿渣微粉、5%水泥、0.018%固化剂,此时试件具有良好的水稳定性。强度影响因素试验表明,矿渣微粉对试件强度的增幅影响最大。X射线衍射及扫描电子显微镜分析表明,在矿渣微粉和土壤固化剂的作用下,钢渣中f-CaO被有效消解,团聚体与混凝土碎料、钢渣颗粒的密实包裹阻止了内部水分的挥发和外部自由水的侵入,既保证了钢渣-杂填土基层的强度,又有效抑制了膨胀。  相似文献   

14.
钢渣混凝土存在着诸多缺陷,限制了其在实际工程中的应用,因此本文探究并提出了钢渣混凝土性能优化方案。首先分析了钢渣对混凝土自重、和易性和体积安定性的不利影响,并建议了可行的优化方案。接着,从钢渣替代率的角度,对钢渣混凝土的耐久性能和力学性能进行了分析,发现合适比例的钢渣用量在混凝土中的再生利用是可行的,且钢渣混凝土的整体性能较优于普通混凝土。最后,在全文分析的基础之上,为了充分优化钢渣混凝土的性能,建议将钢渣作为粗、细骨料和钢渣粉的替代率控制在合理范围之内。本文旨在探究钢渣及其替代率对钢渣混凝土性能优化的影响,并建议可行的优化方案,为工程应用试验提供参考。  相似文献   

15.
用风淬渣粉取代矿粉、电炉渣砂取代混合砂、电炉渣石取代碎石制备混凝土,分析了混凝土的内照射指数、外照射指数、f-CaO含量、沸煮膨胀值、比表面积、密度、含水率、容重、含泥量、泥块含量、坍落度、抗压强度及其化学组成、矿物组成与微观形貌,研究了钢渣的安全性与稳定性及风淬渣粉取代矿粉、电炉渣砂取代混合砂、电炉渣石取代碎石与钢渣复合取代矿粉、砂和石对混凝土性能的影响。结果表明,风淬渣粉、电炉渣砂和电炉渣石的安全性与稳定性满足国标要求,可用于混凝土。当风淬渣粉取代20wt%矿粉、电炉渣砂取代10wt%混合砂和电炉渣石取代20wt%碎石时,混凝土的性能最优。钢渣复合取代矿粉、砂和石的比例合适,可改善混凝土的界面结构密实度,尤其能提高混凝土养护后期的强度。  相似文献   

16.
探讨以钢渣微细粉取代部分水泥的高强混凝土力学性能及抗渗透性能,并利用扫描电镜和压汞仪进行试验分析。研究表明:(1)在基准混凝土中掺10%的钢渣微细粉,能充分发挥其润滑、填充作用,明显提高混凝土的强度及抗渗透性能。(2)比表面积为453m^2/kg的矿物微细粉,可有效提高水化速度,从而对混凝土强度及坍落度有所贡献。(3)采用高效减水剂在提高混凝土抗压强度的同时,可有效改善混凝土的抗渗透性能。  相似文献   

17.
陈华  李辉  顾恒星  杨刚  陈伟 《硅酸盐通报》2017,36(7):2447-2452
以特殊钢尾渣作为掺和料,制备钢渣代砂环保型泡沫混凝土,即特殊钢尾渣泡沫混凝土.基于正交设计与BP神经网络考察各制备因素对特殊钢尾渣泡沫混凝土干密度与28 d强度的影响.结果表明,最优特殊钢尾渣泡沫混凝土的制备工艺参数:水泥用量74.9份、特殊钢尾渣用量30.2份、粉煤灰用量12.8份、水料比0.455、发泡剂用量309.7 g,其干密度628.49 g/cm3和28 d强度2.675 MPa.所建立的BP神经网络模型精确性高,即实验测试值与模型预测值的相对误差分别为3.854%与3.925%.特殊钢尾渣泡沫混凝土中C-S-H凝胶将特殊钢尾渣包裹,不仅能提高所制备泡沫混凝土的力学性能,而且能增强所制备混凝土中的应用性和安全性.  相似文献   

18.
孙家瑛  张健  金强  张晖 《粉煤灰》2006,18(3):20-21,23
混凝土需要加入大量的掺和物来降低混凝土的成本,同时也改善了混凝土的性能.随着研究的不断深入,优质高性能掺合料愈来愈成为混凝土中不可缺少的组分.在当今世界钢渣资源化利用的水平上,钢渣微粉是钢渣综合利用的技术制高点.为了拓展钢渣微粉在水泥混凝土领域中的应用,本文试验分析了宝钢钢渣微粉的压蒸安定性以及钢渣微粉与水泥和混凝土外加剂相容性关系.  相似文献   

19.
用不锈钢渣、水泥、粉煤灰、发泡剂与水制备不锈钢渣泡沫混凝土,测试了不锈钢渣及泡沫混凝土的化学成分、微观形貌、矿物组成、结构、游离CaO含量、易磨性、内辐射指数与外辐射指数、活性指数、主要性能指标(抗压强度、干密度和导热系数)和浸出液中重金属浓度,研究了不锈钢渣用于制备泡沫混凝土的可行性与环境风险。结果表明,不锈钢渣的主要矿物组成为Ca2SiO4及含Al和Ti, Cu, Pb, Ta等重金属的矿相,具有一定胶凝活性且易磨,内辐射指数与外辐射指数满足建筑材料放射性元素限量要求。不锈钢渣掺量为25wt%?42wt%时,泡沫混凝土的干密度为597?621 g/cm3,养护28 d后抗压强度为1.83?2.98 MPa、导热系数为0.11?0.12 W/(m?K),满足泡沫混凝土要求。不锈钢渣所含重金属主要以稳定的金属固熔体存在,浸出浓度远低于危险废物限值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号