首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tensile and low cyclic fatigue tests were used to assess the influence of micro-additions of Ti/V/Zr on the performance of Al–7Si–1Cu–0.5Mg (wt.%) alloys in the as-cast and T6 heat-treated conditions and their improvement was compared to the base alloy. The microstructure of the as-cast Al–7Si–1Cu–0.5Mg (wt.%) base and modified alloys consisted of α-Al, eutectic Si, and Cu, the Mg- and Fe-based phases Al2.1Cu, Al8.5Si2.4Cu, Al7.2Si8.3Cu2Mg6.9 and Al14Si7.1FeMg3.3. In addition, the micro-sized Ti/V/Zr-rich phases Al6.8Si1.4Ti, Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr and Al5.1Si35.4Ti1.6Zr5.7Fe were identified in the modified alloys. It was also noticed that increasing the content of Ti–V–Zr changed the morphology of Ti/V/Zr-rich phase. The tensile test results showed that the T6 heat-treated alloy modified with the addition of a higher content of Ti–V–Zr achieved the highest tensile strength of 343 MPa over the base alloy and alloys modified with additions of Ti, Ti–Zr and lower contents of Ti–V–Zr. The plastic strain energy density coefficient of the alloy modified with the addition of a higher content of Ti–V–Zr in the T6 temper condition was higher than the other studied alloys and reached 162 MJ m−3. The fatigue life of the same alloy was considerably longer than that of the other studied alloys, including the base alloy. The fractography revealed that all the studied alloys showed similar fracture behavior. The tensile cracks propagated through the eutectic Si and primary phases, exhibiting intergranular fracture along with some cleavage-like features of the plate-shaped Zr–Ti–V-rich intermetallics with the presence of fatigue striations on the latter, indicating their ductile nature. It is believed that the morphological changes of intermetallic precipitates containing Zr, Ti and V enhance the fatigue life of the alloy modified with additions of larger amounts of Ti–V–Zr in the T6 condition.  相似文献   

2.
The effect of Mn addition on microstructure and mechanical properties during isochronal annealing in the temperature range of 20 °C–570 °C of the mould-cast and heat-treated Al–Sc–Zr alloys with a various content of Mn and Zr was studied. The electrical resistometry together with the microhardness (HV0.3) measurements were compared to microstructure development. The microstructure development was examined by scanning electron microscopy, transmission electron microscopy and electron diffraction. Relative resistivity changes and the microhardness of the mould-cast and heat-treated Al–Mn–Sc–Zr alloys exhibit similar dependence on annealing temperature. Precipitation of the Al3Sc particles is responsible for the peak microhardness in all these alloys. The microhardness decrease is slightly delayed during the isochronal annealing and during the high temperature heat treatment in the mould-cast alloy with the higher Zr-content due to a higher oversaturation of Zr. The decomposition sequence of the oversaturated solid solution of the studied Al–Mn–Sc–Zr alloys is compatible with the recently published decomposition sequence of the Al–Sc–Zr system and also with the formation of Mn,Fe-containing particles. It seems very probable that the addition of Mn does not influence the decomposition of solid solution of the ternary Al–Sc–Zr system.  相似文献   

3.
Al–Sc and Al–Sc–Zr alloys containing 0.05, 0.1 and 0.5 wt.% Sc and 0.15 wt.% Zr were investigated using optical microscopy, electron microscopy and X-ray diffraction. The phase composition of the alloys and the morphology of precipitates that developed during solidification in the sand casting process and subsequent thermal treatment of the samples were studied. XRD analysis shows that the weight percentage of the Al3Sc/Al3(Sc, Zr) precipitates was significantly below 1% in all alloys except for the virgin Al0.5Sc0.15Zr alloy. In this alloy the precipitates were observed as primary dendritic particles. In the binary Al–Sc alloys, ageing at 470 °C for 24 h produced precipitates associated with dislocation networks, whereas the precipitates in the annealed Al–Sc–Zr alloys were free of interfacial dislocations except at the lowest content of Sc. Development of large incoherent precipitates during precipitation heat treatment reduced hardness of all the alloys studied. Growth of the Al3Sc/Al3(Sc, Zr) precipitates after heat treatment was less at low Sc content and in the presence of Zr. Increase in hardness was observed after heat treatment at 300 °C in all alloys. There is a small difference in hardness between binary and ternary alloys slow cooled after sand casting.  相似文献   

4.
The effects of addition of Zr and Ag on the mechanical properties of a Cu–0.5 wt%Cr alloy have been investigated. The addition of 0.15 wt%Zr enhances the strength and resistance to stress relaxation of the Cu–Cr alloy. The increase in strength is caused by both the decrease in inter-precipitate spacing of Cr precipitates and the precipitation of Cu5Zr phase. The stress relaxation resistance is improved by the preferentially forming Cu5Zr precipitates on dislocations, in addition to Cr precipitates on dislocations. The addition of 0.1 wt%Ag to the Cu–Cr and Cu–Cr–Zr alloys improves the strength, stress relaxation resistance and bend formability of these alloys. The increase in strength and stress relaxation resistance is ascribed to the decrease in inter-precipitate spacing of Cr precipitates and the suppression of recovery during aging, and to the Ag-atom-drag effect on dislocation motion. The better bend formability of the Ag-added alloys is explained in terms of the larger post-uniform elongation of the alloys.  相似文献   

5.
In order to clarify the possibility of Zr substitution for Sc on the modification of Al-Si casting alloys, the microstructural evolution and tensile properties of Al-Si-Mg based alloys with different combinations of Sc and Zr contents (Sc + Zr = 0.5 wt.%) were systematically investigated. It was found that 0.5 wt.% Sc addition could refine the microstructure significantly and modify the eutectic Si from plate-like morphology to fiber, which promotes the spheroidization of eutectic Si during heat treatment. When Zr was added to partly replace Sc, the microstructure was first further refined, but was then slightly coarsened with increasing Zr content. Moreover, high Zr content was found to decrease its modification on eutectic Si. It was observed that Zr can also concomitantly improve strength and ductility compared with the alloy modified by Sc only. The improvement of mechanical properties was attributed to microstructural refinement, particularly the modification of eutectic Si and precipitation of secondary nano-scale Al3(Sc1  xZrx) dispersoids.  相似文献   

6.
The Mg–Y–Zr system was studied via experimental investigation and thermodynamic modeling. Four diffusion couples and four key alloys of the Mg–Y–Zr system at 500 °C were prepared. The phase relations of the Mg–Y–Zr system were investigated by means of X-ray diffraction, scanning electron microscopy, and electron probe microanalysis. No ternary compound was found at 500 °C. The solubility of (αZr) in the Mg–Y intermetallics, i.e., Mg24Y5, Mg2Y and MgY, was determined to be negligible. The differential scanning calorimetry measurement was performed on the Mg–Y–Zr alloys to obtain the phase transition temperature. The present thermodynamic calculations of the Mg–Y–Zr system matched well with the experimental data. The presently established Mg–Y–Zr phase diagram can offer a better understanding of the recent processing technique of creep-resistant magnesium alloys.  相似文献   

7.
The thermal stability of nanostructured Fe100?x?y Ni x Zr y alloys with Zr additions up to 4 at.% was investigated. This expands upon our previous results for Fe–Ni base alloys that were limited to 1 at.% Zr addition. Emphasis was placed on understanding the effects of composition and microstructural evolution on grain growth and mechanical properties after annealing at temperatures near and above the bcc-to-fcc transformation. Results reveal that microstructural stability can be lost due to the bcc-to-fcc transformation (occurring at 700 °C) by the sudden appearance of abnormally grown fcc grains. However, it was determined that grain growth can be suppressed kinetically at higher temperatures for high Zr content alloys due to the precipitation of intermetallic compounds. Eventually, at higher temperatures and regardless of composition, the retention of nanocrystallinity was lost, leaving behind fine micron grains filled with nanoscale intermetallic precipitates. Despite the increase in grain size, the in situ formed precipitates were found to induce an Orowan hardening effect rivaling that predicted by Hall–Petch hardening for the smallest grain sizes. The transition from grain size strengthening to precipitation strengthening is reported for these alloys. The large grain size and high precipitation hardening result in a material that exhibits high strength and significant plastic straining capacity.  相似文献   

8.
Transmission electron microscopy, X-ray diffraction, scanning electron microscopy, differential thermal analysis, and differential scanning calorimetry were used to investigate the transformation behavior of (Al0.88Ni0.08Co0.04)100−x,Zrx, (wherex = 0 to 5 at. %) alloys during ball milling, and the thermal stability during the reverse process of return to equilibrium. The results have shown that the crystalline to amorphous transformation occurs only in compositions containing Zr. Mechanical grinding is shown to easily amorphize the Al3Zr compound which enters in equilibrium with the fcc-Al and (Co, Ni)2Al9 phases for the compositions studied. The formation of an amorphous phase at the fcc-Al and Co2Al9 grain boundaries leads to a wetting transition, and with decreasing grain size the initially nanostructured Al88Ni8Co4 alloy was found to progressively transform to an amorphous alloy. The crystallization temperature, the activation energy, and the crystallization enthalpy increase, while the melting temperature of the quaternary alloys decrease with increasing Zr substitution up to 5 at. %.  相似文献   

9.
In this work, the effects of Nb content on microstructure and corrosion behaviors of biomedical Zr–Nb alloys were systematically studied. The results of XRD analysis and optical microscopy indicated that the experimental Zr–Nb alloys had a duplex structure of α and β phases, and the content of β phase increased with the increase of Nb content. The electrochemical impedance spectroscopy (EIS) studies showed an improvement on the resistance of the spontaneous oxide film with increasing Nb content. The EIS data, fitted by Rs(QpRp) model, suggested a single passive film formed on the experimental material surfaces. Polarization tests in Hank's solution revealed a nobler electrochemical behavior of the Zr–Nb alloys after alloying Nb to pure Zr. The corrosion resistance increased with increasing Nb content, as indicated by lower corrosion current densities and passive current densities and higher pitting potentials. The major components on the surfaces of the corroded Zr–Nb alloy samples detected by XPS were ZrO2 and Nb2O5. The biocompatibility of Zr–Nb alloys was primarily evaluated by culturing L-929 cells in the extraction media of Zr–Nb alloy samples and excellent results were obtained. All of these above results suggested that the Zr–22Nb alloy, among the experimental alloys, showed a promising potential for biomedical applications.  相似文献   

10.
We are studying reactions of Ti, V, Zr, and Hf with ceramics as part of a program to understand fundamental reaction and bonding mechanisms in active metal brazing of ceramics. In this paper we present results of experiments with model systems comprising Ag alloys that contain different amounts of Hf or Zr that were reacted with sapphire or 99.6% alumina for different times and temperatures in a controlled atmosphere furnace. In these alloys the Ag functions as an inert solvent, which allowed us systematically to determine the effects of changes in concentration of the active element. We observed qualitative wetting and spreading tendencies of the alloys during heating and examined cross sections after cooling using electron analytical techniques. For all reaction times studied, the Hf/Ag alloys formed a discontinuous reaction layer, which was consistent with earlier high-resolution electron microscopy that showed sub-micrometer HfO2 particles embedded in the surfaces of the Al2O3 grains. By contrast, initial reaction of the Zr/Ag alloys with Al2O3 produced a continuous interface layer. With longer reaction times, the ZrO2 reaction product became much thicker and exhibited three distinct zones at the interface. The results suggest that the rate limiting step in the Zr/Ag reaction is the chemical reaction at the interface, whereas with Hf/Ag reaction diffusion of products away from the interface is rate limiting.  相似文献   

11.
The influence of Zirconium on the grain refinement performance of Al–Ti–C master alloys and the effect mechanism has been studied in this paper. The experimental results show that Zr not only results in poisoning the Al–Ti–B master alloy, but also poisons the Al–Ti–C master alloys. The poisoning effect is more obvious at higher melting temperature. When 0.12%Zr is added into the melt, the grain refinement performance of Al–5Ti–0.4C refiner with 0.2% addition level absolutely disappears at 800 °C. The experimental results also show that it is difficult to refine the commercial purity Al containing 0.15%Zr by Al–5Ti–0.4C master alloy. Further experiments show that the Zr element can interact with both TiAl3 and TiC phases. If both of them are present, Zr preferentially reacts with TiAl3 phase.  相似文献   

12.
The effects of trace Zr on the fatigue behavior of Cu–6Ni–2Mn–2Sn–2Al alloy were studied through the initiation and growth behavior of a major crack. When stress amplitude was less than σa = 350 MPa, the fatigue life of Zr-containing alloys was about 2 times larger than that of alloy without Zr. When σa = 400 MPa, the effects of Zr addition on fatigue life disappeared. Increased fatigue life due to Zr addition resulted from an increase in crack initiation life and microcrack growth life. Zr addition generated strengthened grain boundaries (GBs) that developed from the precipitation of SnZr compounds. Strengthened GBs contributed to the increase in crack initiation life. The effects of Zr addition on fatigue behavior were discussed with relation to the behavior of microcracks.  相似文献   

13.
Mg–xGd–0.6Zr (x = 2, 4, and 6% mass fraction) alloys were synthesized by semi-continuous casting process. The effects of gadolinium content and aging time on microstructures and mechanical properties of the Mg–xGd–0.6Zr alloys were investigated. The results show that the microstructures of the as-cast GKx (x = 2, 4, and 6%) alloys are typical grain structures and no Gd dendritic segregation. In as-cast Mg–6Gd–0.6Zr alloy, the second phases Mg5.05Gd, Mg2Gd, and Mg3Gd will form due to non-equilibrium solidification during the casting process, and these second phases will disappear after hot-extrusion. The residual compressive stress exists in alloys after extrusion and increases with increasing Gd content. The existence of residual compressive stress contributes to the tensile strength. The elongation of all extruded alloys is over 30%, and the ultimate and yield tensile strength of the Mg–6Gd–0.6Zr alloy are 237 and 168 MPa, respectively. After isothermal aging for 10 h, the strength of extruded Mg–6Gd–0.6Zr alloys increases slightly, however, the elongation of alloys rarely decreases. The fracture mechanism of all studied alloys is ductile fracture.  相似文献   

14.
Both the addition of 0.6% Sc and simultaneous addition of 0.2% Sc and 0.1% Zr exerted a remarkable effect on grain refinement of as-cast Al–Mg alloys, changing typical dendritic microstructure into fine equiaxed grains. Such effect was found to be related to the formation of primary particles, which acted as heterogeneous nucleation sites for α-Al matrix during solidification. Primary particles formed in Al–Mg–Sc–Zr alloy could be identified as the eutectic structure consisting of multilayer of ‘Al3(Sc,Zr)?+?α-Al?+?Al3(Sc,Zr)’, with a ‘cellular-dendritic’ mode of growth. In addition, an attractive comprehensive property of as-cast Al–5Mg alloy due to the addition of 0.2% Sc and 0.1% Zr was obtained.  相似文献   

15.
Abstract

Sintered Al2O3 was joined to Ni–Cr steel by the active metal brazing route with Ag–Cu–Zr brazing alloys containing Sn or Al. A single ZrO2 layer with a monoclinic structure was formed at the Al2O3 /brazement interface by the migration of Zr in the molten brazing alloy to the Al2O3 surface, followed by a redox reaction between the Al2O3 and Zr. The remainder of the brazement formed a Cu–Ag eutectic alloy. Precipitates CuZr2 and Cu–Zr–Al were formed in the brazements of the Ni–Cr steel/ Al2O3 joints brazed with Ag–Cu–Zr alloys and Al containing Ag–Cu–Zr alloys, respectively. On the other hand, no precipitates were formed in the brazement of the Ni–Cr steel/Al2O3 joints brazed with Sn containing Ag–Cu–Zr alloys. The Ni–Cr steel/ Al2O3 joints brazed with Sn containing Ag–Cu–Zr alloys showed much higher fracture shear strengths than those brazed with Ag–Cu–Zr alloys or Al containing Ag–Cu–Zr alloys.  相似文献   

16.
采用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及室温拉伸、剥落腐蚀、晶间腐蚀等测试方法,研究了微量的Mn和Zr对Al-Zn-Mg-Cu铝合金的组织和性能各向异性的影响。结果表明,在Al-Zn-Mg-Cu-Ti合金中,分别添加微量的Mn和Zr,合金中对应析出细小弥散的Al6Mn和Al3Zr相,这两相均能抑制基体再结晶,促使合金的晶粒纵横比增大。合金的力学性能、抗晶间腐蚀和剥落腐蚀性能提高,但性能各向异性增大。同时,结果显示Zr对合金的组织和性能各向异性的影响显著大于Mn。  相似文献   

17.
《材料科学技术学报》2019,35(7):1368-1377
Effects of samarium (Sm) content (0, 2.0, 3.5, 5.0, 6.5 wt%) on microstructure and mechanical properties of Mg–0.5Zn–0.5 Zr alloy under as-cast and as-extruded states were thoroughly investigated. Results indicate that grains of the as-cast alloys are gradually refined as Sm content increases. The dominant intermetallic phase changes from Mg3Sm to Mg41Sm5 till Sm content exceeds 5.0 wt%. The dynamically precipitated intermetallic phase during hot-extrusion in all Sm-containing alloys is Mg3Sm. The intermetallic particles induced by Sm addition could act as heterogeneous nucleation sites for dynamic recrystallization during hot extrusion. They promoted dynamic recrystallization via the particle stimulated nucleation mechanism, and resulted in weakening the basal texture in the as-extruded alloys. Sm addition can significantly enhance the strength of the as-extruded Mg–0.5Zn–0.5 Zr alloy at room temperature, with the optimal dosage of 3.5 wt%. The optimal yield strength (YS) and ultimate tensile strength (UTS) are 368 MPa and 383 MPa, which were enhanced by approximately 23.1% and 20.8% compared with the Sm-free alloy, respectively. Based on microstructural analysis, the dominant strengthening mechanisms are revealed to be grain boundary strengthening and dispersion strengthening.  相似文献   

18.
Abstract

The effect of the reactive elements (REs), Y and Zr, on oxidation of β-NiCrAl alloy at 1373 K in a gas mixture of argon with 20 vol.% oxygen at atmospheric pressure was evaluated using X-ray diffractometry, scanning electron microscopy, electron probe X-ray microanalysis and secondary ion mass spectroscopy. The oxide surfaces and interface morphologies, compositions and growth kinetics were studied for alloys with 0.32 at.% Zr and 0.24 at.% Y additions and for an undoped alloy. The oxide layer produced on the three different alloys contains mainly α-alumina and some intermediate alumina modification, Cr2O3 and RE-oxides. A needle-like morphology was seen on top of the oxide layer for the undoped and Zr alloy. Needle formation on the Y alloy was suppressed by the formation of a thin Y2O3 layer during the initial stage of oxidation. Needles were maintained to long oxidation times for the undoped alloy, but disappeared on the doped alloys indicating that some cation diffusion is possible when REs are present. Fewer intermediate alumina modifications are seen for the oxide layers on the RE alloys showing that the REs promote the formation of the α-alumina phase. Oxide layer growth occurs in two stages for all alloys. Initially, oxide growth is rapid with outward diffusion of aluminium. The second stage of oxidation is slow and is initiated by the formation of a closed α-alumina layer limiting further oxidation to inward oxygen diffusion. This stage is characterised by parabolic growth kinetics associated with a constant aluminium interface concentration. The oxide layer is thinnest for the Y alloy due the fine Y2O3 layer acting as a diffusion barrier. The oxide/alloy interface for the undoped alloy is flat and shows many voids, whereas voids are not seen for the RE alloys. This is due to the promotion of a closed α-alumina layer giving predominantly inward growth early in the oxidation process. Oxide pegs of the RE are also seen growing into the alloys. The lack of voids and the oxide pegs are advantageous for oxide layer adhesion to the doped alloys.  相似文献   

19.
The influence of doping with Ti and Al on the structure and hydrogen sorption properties of ZrFe2 was studied by XRD, XRSMA, and measurement of hydrogen absorption and desorption isotherms at pressure up to 300 MPa. The hydrogen capacity and equilibrium desorption pressures of hydrides decrease with increasing Al content at a constant ratio of Ti and Zr. The increase in the Ti content at a constant content of Al in alloys also leads to a decrease in hydrogen capacity; however, the equilibrium desorption pressures of hydrides increase considerably. Zr1−x Ti x (Fe1−y Al y )2 (x= 0.2–0.8; y = 0.05–0.4) alloys were investigated.  相似文献   

20.
Abstract

The influence of age hardening temperature and time on the hardness, tensile properties, electrical conductivity, and microstructure of Cu – 4Ti – 0.1Zr and Cu – 3Ti – 0.1Zr alloys has been investigated. The resulting microstructure of these alloys suggests that zirconium addition prohibited the formation of compositional modulations in the solution treated condition. These alloys exhibited maximum hardness and strength on peak aging at 450°C for 24 h by the formation of a coherent and metastable Cu4Ti phase (β') in modulated structure while overaging occurred by the formation of equilibrium phase β-Cu3Ti. The electrical conductivity of both the alloys increased moderately on aging. Unlike in an earlier study of binary Cu – Ti and some ternary Cu – Ti – X alloys, overaging did not cause any discontinuous precipitation in the Cu – Ti – Zr alloys investigated. Modulated structure formed on peak aging persisted on prolonged aging at 450°C for 80 h or at 500°C for 8 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号