首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method to determine the dielectric constant and loss of high-K thin film dielectrics in the microwave frequency region using the extended cavity perturbation technique is presented. The feasibility of the technique is demonstrated by the determination of the dielectric constant and loss for reactively sputtered TiO2 thin films on borosilicate glass substrates. The dielectric constant and loss is measured at 8.98, 9.96 and 10.97 GHz using a TE10n rectangular cavity. Using this technique, the dielectric properties of TiO2 films deposited under varying oxygen percentage in the sputtering atmosphere from 20% to 100% were measured. The dielectric constant and loss are found to be dependent on both the oxygen partial pressure as well as frequency of measurement. The film deposited at 50% of oxygen had a higher dielectric constant, εr = 44.35 at 8.98 GHz, where as the film deposited at 100% oxygen showed the lowest value of dielectric constant, εr = 21.36 at 10.97 GHz. The dielectric loss tangent varied from 0.004 to 0.019 depending on frequency and oxygen partial pressure. However this technique is applicable only for thin films coated on low K dielectric substrates.  相似文献   

2.
In the present work, we have studied simultaneous measurements of thermal transport properties (effective thermal conductivity, diffusivity, specific heat per unit volume, thermal inertia IT) of glassy Se80−xTe20Snx (0 ? x ? 10) system using their twin pellets. The glassy system is prepared under a load of 5 tons and measurements have been made at room temperature using Transient Plane Source (TPS) technique. The composition dependence of the thermal transport properties of given glassy system is also discussed.  相似文献   

3.
The control of vortex shedding of a circular cylinder in shallow water using a splitter plate located in the downstream of the circular cylinder was studied by employing particle image velocimetry (PIV) technique. Experiments were carried out in a water channel having a test section of 8000 mm × 1000 mm × 750 mm dimensions at a Reynolds number of 6250. The length of the splitter plate (L) was varied within the range of 0.5 ? L/D ? 2 with an increment of 0.5. The plate was submerged into water at different height ratios (hp/hw) such as 0.25, 0.5, 0.75 and 1.0. Mean velocity vector field, corresponding vorticity contours, streamline topologies and turbulent quantities were calculated using 300 instantaneous velocity vector field measured by PIV. As the ratio of hp/hw increases, the effect of the splitter plate on the suppression of the vortex shedding increases. Flow characteristics and examination of spectra indicate that Karman vortex shedding is attenuated pronouncedly for the cases of L/D ? 1 and hp/hw ? 0.75. The transverse Reynolds normal stress is more effective on the attenuation of turbulent kinetic energy than the streamwise Reynolds normal stress. The value of peak transverse Reynolds normal stress is reduced to 90% of that of the bare cylinder at most.  相似文献   

4.
A series of Fe54±1Pt46±1 thin films have been sputter-deposited and annealed at various times and temperatures to facilitate the A1 to L10 polymorphic phase transformation. The annealing times span one minute to tens of minutes over temperatures of 300–800 °C. The films were characterized by X-ray and electron diffraction and atom probe tomography. This time–temperature regime provides ‘snap-shots’ into the compositional segregation evolution at the grain boundaries during the polymorphic phase transformation. The as-deposited A1 phase showed a preferential segregation of Pt to the grain boundaries. The reduction of Pt enrichment at the boundaries was observed for all L10 ordered films.  相似文献   

5.
High load friction and wear experiments by means of atomic force microscopy were carried out at the surface of highly (0 0 1) oriented vanadium oxide V2O5 thin films deposited on silicon by reactive magnetron sputtering. Microscopic friction coefficient was estimated for wide range of loads. The nature of surface wear due to multiple, high load scanning is presented and discussed.  相似文献   

6.
A phenomenological method is developed to determine the composition of materials, with atomic column resolution, by analysis of integrated intensities of aberration-corrected Z-contrast scanning transmission electron microscopy images. The method is exemplified for InAsxP1−x alloys using epitaxial thin films with calibrated compositions as standards. Using this approach we have determined the composition of the two-dimensional wetting layer formed between self-assembled InAs quantum wires on InP(0 0 1) substrates.  相似文献   

7.
Nano Au-TiO2 composite thin films on Si(1 0 0) and glass substrates were successfully prepared with a facile sol-gel process followed by sintering. The morphology and mircostructure of the films were investigated via X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The Au particles, of diameter 14-22 nm depending on the sintering temperatures used, were found to be well dispersed in the TiO2 matrix, with a small amount of the particles escaped from the film. The surfaces of the films were uniform, compact and crack-free. Hardness and elastic modulus of the films were measured by using the nanoindentation technique. Friction and wear properties were investigated by using a one-way reciprocating tribometer. It was found that the highest hardness and elastic modulus values were obtained for the films prepared with 500 °C sintering temperature. The films displayed superior antiwear and friction reduction performances in sliding against an AISI 52100 steel ball. With 5.0 mol% Au, the friction coefficient was only 0.09-0.10 and the wear life was more than 2000 sliding cycles. The friction coefficient and wear life decreased with increasing sliding speed and load. The failure mechanism of the Au-TiO2 films was identified to be light scuffing and abrasion. Those films can be potentially applied as ultra-thin lubricating coatings.  相似文献   

8.
The domain switching properties of the ferroelectric Pb(Zr0.2Ti0.8)O3 (PZT) thin films with two types of crystallographic orientations were investigated by electrostatic force microscopy (EFM). The crystallographic orientations of the PZT thin films were random on the (1 1 1)Pt/MgO(1 0 0) and c-axis preferred on the (1 0 0)Pt/MgO(1 0 0), respectively. When dc bias was applied to the films for writing in micro-scale area, electrostatic force images showed that the domain switching was hard in the PZT thin films with random orientation, while the pattern could clearly be written in the PZT films with c-axis orientation. The differences in the domain switching properties of each PZT thin film were investigated in the crystallographic orientations point of view, and the domain switching dynamics were also measured by investigating the nano-sized dot switching behavior with respect to the width of the applied voltage pulse.  相似文献   

9.
Molecular structure of monolayers formed at the interface between Au(1 1 1) surfaces and solutions containing n-alkanes has been studied by in situ scanning tunneling microscopy at room temperature. Increasing the CnH2n+2 length from n=10 up to 50 with even n numbers alternates rectangular and tilted arrangement of alkanes within the self-organized layers. This alternation is related to the dramatically lowered sliding force for molecules with a length close to mT (m-integer), where T is the period of commensurability between the CH2-CH2-CH2 period along alkyl chains and the interatomic distance along Au〈1 1 0〉 direction.  相似文献   

10.
Today, with the development of microsystem technologies, demands for three-dimensional (3D) metrologies for microsystem components have increased. High-accuracy micro-coordinate measuring machines (micro-CMMs) have been developed to satisfy these demands. A high-precision micro-CMM (M-CMM) is currently under development at the National Metrology Institute of Japan in the National Institute of Advanced Industrial Science and Technology (AIST), in collaboration with the University of Tokyo. The moving volume of the M-CMM is 160 mm × 160 mm × 100 mm (XYZ), and our aim is to achieve 50-nm measurement uncertainty with a measuring volume of 30 mm × 30 mm × 10 mm (XYZ). The M-CMM configuration comprises three main parts: a cross XY-axis, a separate Z-axis, and a changeable probe unit. We have designed a multi-probe measurement system to evaluate the motion accuracy of each stage of the M-CMM. In the measurement system, one autocollimator measures the yaw error of the moving stage, while two laser interferometers simultaneously probe the surface of a reference bar mirror that is fixed on top of an XY linear stage. The straightness motion error and the reference bar mirror profile are reconstructed by the application of simultaneous linear equations and least-squares methods. In this paper, we have discussed the simulation results of the uncertainty value of the multi-probe measurement method using different intervals and standard deviations of the laser interferometers. We also conducted pre-experiments of the multi-probe measurement method for evaluating the motion errors of the XY linear stage based on a stepper motor system. The results from the pre-experiment verify that the multi-probe measurement method performs the yaw and straightness motion error measurement extremely well. Comparisons with the simulation results demonstrate that the multi-probe measurement method can also measure the reference bar mirror profile with a small standard deviation of 10 nm.  相似文献   

11.
Recent results of tribological properties of carbon nitride (CNx) coatings are reviewed. CNx coatings of 100 nm thickness were formed on Si-wafer and Si3N4 disks by the ion beam mixing method. Friction and wear tests were carried out against Si3N4 balls in the environments of vacuum, Ar, N2, CO2, O2 or air by a ball-on-disk tribo-tester in the load range of 80-750 mN and in the velocity range of 4-400 mm/s.It was found that friction coefficient μ is high (μ=0.2-0.4) in air and O2, and low (μ=0.01-0.1) in N2, CO2 and vacuum. The lowest friction coefficient (μ<0.01) was obtained in N2. It was also found that N2 gas blown to the sliding surfaces in air effectively reduced the friction coefficient down to μ≈0.017. Wear rate of CNx coatings varied in the range 10−9-10−5 mm3/N m depending on the environment.The wear mechanisms of CNx in the nanometer scale were studied by abrasive sliding of an AFM diamond pin in air. It was confirmed that the major wear mechanism of CNx in abrasive friction was low-cycle fatigue which generated thin flaky wear particles of nanometre size.  相似文献   

12.
Interaction of hydrogen with metallic multi-layered thin films remains as a hot topic in recent days. Detailed knowledge on such chemically modulated systems is required if they are desired for application in hydrogen energy system as storage media. In this study, the deuterium concentration profile of Fe/V multi-layer was investigated by atom probe tomography (APT) at 60 and 30 K. It is firstly shown that deuterium-loaded sample can easily react with oxygen at the Pd capping layer on Fe/V and therefore, it is highly desired to avoid any oxygen exposure after D2 loading before APT analysis. The analysis temperature also has an impact on D concentration profile. The result taken at 60 K shows clear traces of surface segregation of D atoms towards analysis surface. The observed diffusion profile of D allows us to estimate an apparent diffusion coefficient D. The calculated D at 60 K is in the order of 10−17 cm2/s, deviating 6 orders of magnitude from an extrapolated value. This was interpreted with alloying, D-trapping at defects and effects of the large extension to which the extrapolation was done. A D concentration profile taken at 30 K shows no segregation anymore and a homogeneous distribution at cD=0.05(2) D/Me, which is in good accordance with that measured in the corresponding pressure–composition isotherm.  相似文献   

13.
J.H. Ouyang  S. Sasaki  T. Murakami  K. Umeda 《Wear》2005,258(9):1444-1454
Spark-plasma sintering is employed to synthesize self-lubricating ZrO2(Y2O3) matrix composites with different additives of CaF2 and Ag as solid lubricants by tailoring the composition and by adjusting the sintering temperature. The friction and wear behavior of ZrO2(Y2O3) matrix composites have been investigated in dry sliding against an alumina ball from room temperature to 800 °C. The effective self-lubrication at different temperatures depends mainly on the content of various solid lubricants in the composites. The addition of 35 wt.% Ag and 30 wt.% CaF2 in the ZrO2(Y2O3) matrix can promote the formation of a well-covered lubricating film, and effectively reduce the friction and wear over the entire temperature range studied. The friction coefficients at low temperatures were at a minimum value for the composite containing 35 wt.% of silver. At this silver concentration, low and intermediate temperature lubricating properties are greatly improved without affecting high-temperature lubrication by the calcium fluoride in ZrO2(Y2O3) matrix composites. The worn surfaces and transfer films formed during wear process have been characterized to identify the synergistic lubrication behavior of CaF2 and Ag lubricants at different temperatures.  相似文献   

14.
We have fabricated nanoscale recording marks on Ge2Sb2Te5 (GST) films with conductive atomic force microscope (AFM). GST films were deposited on glass or polyimide film with thickness of 150–200 nm by the rf–sputtering method. Through current–voltage (I–V) spectroscopy, good cantilevers for fabrication and characterization of nanoscale marks on GST were selected. A fresh and highly conductive tip showed voltage-switching characteristic in the I–V curve, where the threshold voltage was 1.6 V. Nanoscale dot and wire arrays of crystalline phases were successfully obtained by varying sample bias voltage from −10 to 10 V. With highly conductive tips, nanowires having full-width at half-maximum of 20 nm could be fabricated, whereas nanowires could not be fabricated with bias voltage below −2 V. The width of the nanoscale mark was increased by repetition of AFM lithography even with same applied voltage and lithography speed. For a thicker nanowire, the width measured in current-image (C-image) was observed to be 2 times of that measured in topography-image (T-image). This result supports that current sensing provides an image of phase-changed GST area with higher resolution than topography sensing.  相似文献   

15.
This paper investigates the feasible machining of zirconium oxide (ZrO2) ceramics, in the hard state, via milling by diamond coated miniature tools (from here on briefly indicated as meso-scale hard milling). The workpiece material is a fully sintered yttria stabilized tetragonal zirconia polycrystalline ceramic (Y-TZP). Diamond coated WC mills, 2 mm in diameter, four flutes and large corner radius (0.5 mm) are chosen as cutting tools, and experiments are conducted on a state-of-the-art micro milling machine centre. The influence of cutting parameters, including axial depth of cut (ap) and feed per tooth (fz), on the achievable surface quality is studied by means of a one-factor variation experimental design. Further tests are also conducted to monitor the process performance, including surface roughness, tool wear and machining accuracy, over the machining time. Mirror quality surfaces, with average surface roughness Ra below 80 nm, are obtained on the machined samples; the SEM observations of the surface topography reveal a prevailing ductile cutting appearance. Tool wear initiates with delamination of the diamond coating and progresses with the wear of the WC substrate, with significant effect on the cutting process and its performance. Main applications of this research include three dimensional surface micro structuring and superior surface finishing.  相似文献   

16.
The higher sensitization for thermal annealing on TL mechanism in the region 550–600 °C for 80(TeO2)–5(TiO2)–(15 − x) (WO3)–(x) AnOm where AnOm = Nb2O5, Nd2O3, Er2O3 and x = 5 mol% has been measured. The behavior of trap centers and luminescence centers has been investigated for tellurite glasses doped with rare earth oxides irradiated at 0.5 up to 2 Gy and annealed at different temperatures in the range 350–700 °C. The behavior of the three types of tellurite glasses is analyzed regarding to their kinetic parameters and luminescence emission which enhance the claim of tellurite glasses for use as TLD material at therapeutic radiation doses.  相似文献   

17.
High temperature self-lubricating composites Ni3Al-BaF2-CaF2-Ag-Cr were fabricated by powder metallurgy technique. In this paper the effect of Cr content on tribological properties at a wide temperature range starting from room temperature to 1000 °C was investigated. It was found that Ni3Al matrix composite with 20 wt% Cr exhibited low friction coefficient of 0.24-0.37 and a wear rate of 0.52-2.32×10−4 mm3 N−1 m−1. Especially at 800 °C it showed the lowest friction coefficient of 0.24 and a favorable wear rate of 0.71×10−4 mm3 N−1 m−1. This implied that 20 wt% Cr was the optimal Cr content and its excellent tribological performance could be attributed to the balance between strength and lubricity.  相似文献   

18.
One single semiconductor distributed-feedback (DFB) laser is used to demonstrate the possibility of simultaneous measurements of CO and CO2 at elevated temperatures. Wavelength modulation spectroscopy with second-harmonic detection is used to improve the detection sensitivity and accuracy. The concentrations of CO and CO2 are determined from the WMS-1-normalized absorption-based WMS-2f signal peak heights of a proper line pair of CO and CO2 near 6357.814 cm−1 and 6357.312 cm−1, which are selected using some line-selection criterions for the target temperature range of 300–1000 K. The CO and CO2 concentrations measurements are within 2.86% and 2.69% of the expected values over the tested temperature range 300–1000 K. The minimum detectable concentrations of CO and CO2 at 1000 K are 250 ppm m and 280 ppm m respectively.  相似文献   

19.
Current-voltage characteristics of IR photodiodes and distributions of charge carriers in n +-n -p-structures based on vacancy p-doped Hg1 − x Cd x Te films with x = 0.22 are examined. Three-dimensional numerical modeling of the distribution of charge carriers and current-voltage characteristics during photodiode annealing is performed. The calculations predict that large tunnel currents in diodes after implantation can result from an elevated (more than 1015 cm−3) concentration of donors in the n -layer, which enhances tunneling by decreasing the thickness of the space charged region of the n-p-junction, and also from a small (less than 3 μm) depth of the p-n-junction.  相似文献   

20.
Polypyrrole (PPy)-nickel oxide (NiO) hybrid nanocomposite thin films have been prepared by spin coating method. The PPy–NiO hybrid nanocomposites were characterized for structural, morphological, optical and electrical analysis, and the results were compared with the pure PPy films. The structural and optoelectronic properties of PPy–NiO hybrid nanocomposites are quite different from those of pure PPy and NiO nanoparticles, which were attributed to the strong interaction between the PPy and NiO nanoparticles. The XRD pattern shows that broad peak of PPy becoming weaker on increasing the content of NiO nanoparticles in the PPy–NiO hybrid nanocomposites. Also the diffraction peaks of NiO nanoparticles in PPy–NiO (10–50 wt%) nanocomposites were found to shift to lower 2θ values. The morphological studies revealed that the transformation of granular morphology of PPy to the nanospheres and clusters in the PPy–NiO hybrid nanocomposites. FTIR spectra of PPy–NiO hybrid nanocomposites, revealed that the main absorption at 1204 cm−1 and 1559 cm−1 are affected by the presence of NiO nanoparticle in pure PPy and get shifted to 1216 cm−1 and 1570 cm−1 respectively indicates, insertion of NiO nanoparticles in the PPy–NiO hybrid nanocomposite. UV–vis absorption spectrum of PPy corresponding to λmax = 442 nm is blue shifted to λmax = 375 nm in the PPy–NiO hybrid nanocomposites, reveals strong interaction between PPy and NiO nanoparticles. The room temperature dc electrical conductivity is increased from 8.66 × 10−9 to 4.08 × 10−7 (Ω/cm)−1 as the content of NiO nanoparticles increased from 10 to 50 in wt% in the PPy–NiO hybrid nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号