首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
The present study describes the characterization of the binding properties and autoradiographic distribution of a new nonpeptide antagonist of neurotensin receptors, [3H]SR 142948A (2-[[5-(2,6-dimethoxyphenyl)-1-(4-(N-(3-dimethylaminopropyl)-N-methyl carbamoyl)-2-isopropylphenyl)-1H-pyrazole-3-carbonyl]-amino]-ad amantane-2-carboxylic acid, hydrochloride), in the rat brain. The binding of [3H]SR 142948A in brain membrane homogenates was specific, time-dependent, reversible and saturable. [3H]SR 142948A bound to an apparently homogeneous population of sites, with a Kd of 3.5 nM and a Bmax value of 508 fmol/mg of protein, which was 80% higher than that observed in saturation experiments with [3H]neurotensin. [3H]SR 142948A binding was inhibited by SR 142948A, the related nonpeptide receptor antagonist, SR 48692 (2-[[1-(7-chloroquinolin-4-yl)-5-(2,6-dimethoxyphenyl)-1H-pyrazole -3-carbonyl]amino]-adamantane-2-carboxylic acid) and neurotensin. Saturation and competition studies in the presence or absence of the histamine H1 receptor antagonist, levocabastine, revealed that [3H]SR 142948A bound with similar affinities to both the levocabastine-insensitive neurotensin NT1 receptors (20% of the total binding population) and the recently cloned levocabastine-sensitive neurotensin NT2 receptors (80% of the receptors) (Kd = 6.8 and 4.8 nM, respectively). The regional distribution of [3H]SR 142948A binding in the rat brain closely matched the distribution of [125I]neurotensin binding. In conclusion, these findings indicate that [3H]SR 142948A is a new potent antagonist radioligand which recognizes with high affinity both neurotensin NT1 and NT2 receptors and represents thus an excellent tool to study neurotensin receptors in the rat brain.  相似文献   

2.
3.
Three subtypes of human (h) arginine vasopressin (AVP) receptors, hV1A, hV1B and hV2, were stably expressed in Chinese hamster ovary (CHO) cells and characterized by [3H]-AVP binding studies. In addition, the coupling of the expressed receptor protein to a variety of signal transduction pathways was investigated. Scatchard analysis of saturation isotherms for the specific binding of [3H]-AVP to membranes, prepared from CHO cells transfected with hV1A, hV1B and hV2 receptors, yielded an apparent equilibrium dissociation constant (Kd) of 0.39, 0.25 and 1.21 nM and a maximum receptor density (Bmax) of 1580 fmol mg(-1) protein, 5230 fmol mg(-1) protein and 7020 fmol mg(-1) protein, respectively. Hill coefficients did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Pharmacological characterization of the transfected human AVP receptors was undertaken by measuring the relative ability of nonpeptide AVP receptor antagonists, YM087, OPC-21268, OPC-31260, SR 49059 and SR 121463A, to inhibit binding of [3H]-AVP. At hV1A receptors, the relative order of potency was SR49059>YM087>OPC-31260>SR 121463A> >OPC-21268 and at hV2 receptors, YM087=SR 121463A>OPC-31260>SR 49059> >OPC-21268. In contrast, the relative order of potency, at hV1B receptors, was SR 49059> >SR 121463A=YM087=OPC-31260=OPC-21268. In CHO cells expressing either hV1A or hV1B receptors, AVP caused a concentration-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) with an EC50 value of 1.13 nM and 0.90 nM, respectively. In contrast, stimulation of CHO cells expressing hV2 receptors resulted in an accumulation of cyclic AMP with an EC50 value of 2.22 nM. The potency order of antagonists in inhibiting AVP-induced [Ca2+]i or cyclic AMP response was similar to that observed in radioligand binding assays. In conclusion, we have characterized the pharmacology of human cloned V1A, V1B and V2 receptors and used these to determine the affinity, selectivity and potency of nonpeptide AVP receptor antagonists. Thus they may prove to be a valuable tool in further examination of the physiological and pathophysiological roles of AVP.  相似文献   

4.
The intestine is a large endocrine organ, but the dependence of colon cancer on hormones remains unknown. We show here that neurotensin, a paracrine/endocrine peptide in the gut, and the neurotensin receptor antagonist SR 48692 control colon cancer cell growth in vitro and in vivo by interacting with receptors that are ectopically expressed in colon cancers. In cell culture, neurotensin stimulates the growth of human colon cancer cell lines (SW480, SW620, HT29, HCT116 and Cl.19A) expressing the neurotensin receptor NTR1 but does not change the growth of Caco2 cells, which do not express NTR1. In SW480 cells, neurotensin is active in the 10(-10) to 10(-6) M concentration range (ED50 = 0.47 nM) while the neurotensin fragment (I-II) is inactive. Neurotensin also enhances the cellular cloning efficiency of SW480 cells in soft agar by inducing a 50% increase of colony formation. This effect is blocked by SR 48692, which alone does not alter colony formation. Subcutaneous delivery of neurotensin (0.54 micromol/kg every 24 hr) by osmotic pumps to nude mice that have been xenografted with SW480 cells results in a significant increase of tumor volume, i.e., up to 255% of control at day 20 of treatment. SR 48692 administered alone (1.7 micromol/kg every 24 hr) by daily i.p. injections reduces the development of tumors formed by xenografting SW480 cells in nude mice. A significant mean reduction of tumor volume of 38% is observed during the 22-day period of treatment. SR 48692 alone is also active at reducing tumor volume after xenografting HCT116 cells in nude mice. Our results support the notion that colon cancer growth may be dependent on blood-borne neurotensin and suggest that non-peptide neurotensin antagonists, such as SR 48692, may be useful for the development of novel therapeutic strategies of colon cancer.  相似文献   

5.
In order to identify charged amino-acid residues of the cloned rat brain neurotensin (NT) receptor (NTR) that are critical for NT binding, we performed site-directed mutagenesis on the cDNA encoding this protein, followed by transient expression into mammalian COS-7 cells and in Xenopus laevis oocytes. Point substitutions of charged residues in the N-terminal part and in the 2nd and 3rd extracellular loop of the receptor either did not affect (125)I-Tyr3-NT binding or resulted in a decrease in binding affinity by a factor of 2-3. Mutations of amino acids Asp113 in the second transmembrane domain (TM) and of Arg149 or Asp150 in TM III yielded receptors that bound NT as efficiently as the native receptor. By contrast, replacement of the Asp139 residue in the 1st extracellular loop, or of Arg143 or Arg327-Arg328 residues at the top of TM III and in TM VI, respectively, completely abolished ligand binding. Confocal and EM immunocytochemical studies of the expression of these affected receptors, tagged with the C-terminal sequence of the vesicular stomatitis virus glycoprotein (VSV-G), indicated that this loss of binding was not due to altered receptor expression or to their improper insertion into the plasma membrane. When these mutated forms of neurotensin receptor were expressed into Xenopus oocytes, Asp139-Gly- and Arg143-Gly-modified receptors remained functional in spite of a lowered response to NT whereas the Arg327-Arg328 mutant form was totally insensitive to NT at concentrations up to 10 microM. In the case of the Arg327-Arg328 mutation, the observed insensibility to NT could be the result of a drastic conformational alteration of this mutant protein. By contrast, it would appear that Asp139 and Arg143 residues located in the first extracellular loop of the receptor may be directly involved in the interaction of the receptor with neurotensin.  相似文献   

6.
7.
Guinea-pig main bronchi were stimulated transmurally in vitro by electrical field stimulation in the presence of indomethacin 10(-6) M, propranolol 10(-6) M and phosphoramidon 10(-5) M. Two contractile neurogenic responses were successively observed. The second noncholinergic contraction was concentration dependently inhibited or abolished by neurotensin whereas the first cholinergic contraction was only partially inhibited. SR 48692, a novel antagonist of neurotensin receptors, reduced the inhibition induced by neurotensin (pKB = 9.75) whereas levocabastine, an antagonist of low-affinity neurotensin receptors, did not significantly modify the inhibitory effects of neurotensin on both neurally-mediated contractions. These results demonstrate that neurotensin exerts an inhibitory effect on neurotransmission in guinea-pig airways. Furthermore, the present study shows that the newly developed neurotensin receptors antagonist, SR 48692, is a potent inhibitor of the neurotensin inhibitory effects on cholinergic and noncholinergic contractions induced by electrical field stimulation of the guinea-pig isolated main bronchus.  相似文献   

8.
An in vitro receptor binding and in vivo microdialysis study was performed to further investigate the modulation of dopamine (DA) D2 receptors by neurotensin (NT) peptides. Saturation experiments with the D2 agonist [3H]NPA (N-propylnorapomorphine) showed that 10 nM of NT, 10 nM of neuromedin N (NN) and 1 nM of the C-terminal NT-(8-13) fragment significantly increased the KD values by 125%, 181%, and 194%, respectively without significantly affecting the Bmax value of the [3H]NPA binding sites in coronal sections of rat ventral forebrain mainly containing the nucleus accumbens (Acb) and the olfactory tubercle. In line with the previous findings that NT can increase GABA release in the Acb and that NT receptors are not found on DA terminals in this brain region, the present in vivo microdialysis study demonstrated that local perfusion of NT (1 nM) counteracted the D2 agonist pergolide (2 mu M) induced inhibition of GABA, but not of DA release in the rat Acb. This result indicates that NT counteracts the D2 agonist induced inhibition of GABA release in the rat Acb, via an antagonistic postsynaptic NT/D2 receptor interaction as also suggested by the inhibitory regulation of D2 receptor affinity in the Acb by the NT peptides demonstrated in the present receptor binding experiments. Thus, the neuroleptic and potential antipsychotic profile of the NT peptides may involve an antagonistic NT/D2 receptor regulation in the ventral striatum.  相似文献   

9.
The two neurotensin receptor subtypes known to date, NTR1 and NTR2, belong to the family of G-protein-coupled receptors with seven putative transmembrane domains (TM). SR 48692, a nonpeptide neurotensin antagonist, is selective for the NTR1. In the present study we attempted, through mutagenesis and computer-assisted modeling, to identify residues in the rat NTR1 that are involved in antagonist binding and to provide a tentative molecular model of the SR 48692 binding site. The seven putative TMs of the NTR1 were defined by sequence comparison and alignment of bovine rhodopsin and G-protein-coupled receptors. Thirty-five amino acid residues within or flanking the TMs were mutated to alanine. Additional mutations were performed for basic residues. The wild type and mutant receptors were expressed in COS M6 cells and tested for their ability to bind 125I-NT and [3H]SR 48692. A tridimensional model of the SR 48692 binding site was constructed using frog rhodopsin as a template. SR 48692 was docked into the receptor, taking into account the mutagenesis data for orienting the antagonist. The model shows that the antagonist binding pocket lies near the extracellular side of the transmembrane helices within the first two helical turns. The data identify one residue in TM 4, three in TM 6, and four in TM 7 that are involved in SR 48692 binding. Two of these residues, Arg327 in TM 6 and Tyr351 in TM 7, play a key role in antagonist/receptor interactions. The former appears to form an ionic link with the carboxylic group of SR 48692, as further supported by structure-activity studies using SR 48692 analogs. The data also show that the agonist and antagonist binding sites in the rNTR1 are different and help formulate hypotheses as to the structural basis for the selectivity of SR 48692 toward the NTR1 and NTR2.  相似文献   

10.
Activation of endogenous neurotensin (NT) receptors and P2-purinoceptors expressed by human colonic adenocarcinoma HT-29 cells increased extracellular acidification rates that were detected in the microphysiometer. NT (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-Ile-Leu), NT[8-13] (Arg-Arg-Pro-Tyr-Ile-Leu), NT[9-13] (Arg-Pro-Tyr-Ile-Leu), and NT1 (N alpha methyl-Arg-Lys-Pro-Trp-Tle-Leu [Tle = tert-leucine]) were full agonists, whereas XL 775 (N-[N-[2-[3-[[6-amino-1-oxo-2-[[(phenylmethoxy)carbonyl]-amino]hex yl]amino]phenyl]-3-(4-hydroxyphenyl)-1-oxo-2-propenyl]-L-isoleucyl]-L-le ucine) was a partial agonist for activating NT receptors expressed by HT-29 cells. Desensitization induced by NT was rapid and monophasic with 85% of the initial response lost by a 30-s exposure. Once initiated, the rate and extent of desensitization were similar for different concentrations of a given agonist, for agonists of different potencies, and for agonists of different efficacies, which suggests that desensitization may be independent of receptor occupancy or agonist efficacy. Resensitization was a much slower process, requiring 60 min before the full agonist response to NT was recovered. ATP, via P2-purinoceptors, also activated cellular acidification rates in a concentration-dependent manner. ATP induced a biphasic desensitization of purinoceptors with a loss of ca. 50% of the initial stimulation detectable between 30 and 90 s of exposure to the agonist. Desensitization of NT receptors did not influence the activation of P2-purinoceptors by ATP, suggesting there was no heterologous desensitization between the two types of receptors. Superfusion with NT receptor agonists for 15 min at concentrations that did not elicit changes in extracellular acidification rates blocked, in a concentration-dependent manner, the agonist response induced by 100 nM NT. This may reflect sequestration of the receptor. These results suggest that the high agonist affinity state of NT receptors may modulate receptor sequestration, whereas activation of the low agonist affinity state may be linked to cellular metabolism. Comparison of our results with published data found differences as well as similarities of NT responses among three lines of HT-29 cells.  相似文献   

11.
In this work, the 100-kDa neurotensin (NT) receptor previously purified from human brain by affinity chromatography (Zsürger, N., Mazella, J., and Vincent, J. P. (1994) Brain Res. 639, 245-252) was cloned from a human brain cDNA library. This cDNA encodes a 833-amino acid protein 100% identical to the recently cloned gp95/sortilin and was then designated NT3 receptor-gp95/sortilin. The N terminus of the purified protein is identical to the sequence of the purified gp95/sortilin located immediately after the furin cleavage site. The binding of iodinated NT to 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid-solubilized extracts of COS-7 cells transfected with the cloned cDNA was saturable and reversible with an affinity of 10-15 nM. The localization of the NT3 receptor-gp95/sortilin into intracellular vesicles was in agreement with previous results obtained with the purified receptor and with gp95/sortilin. Affinity labeling and binding experiments showed that the 110-kDa NT3 receptor can be partly transformed into a higher affinity (Kd = 0.3 nM) 100-kDa protein receptor by cotransfection with furin. This 100-kDa NT receptor corresponded to the mature form of the receptor. The NT3/gp95/sortilin protein is the first transmembrane neuropeptide receptor that does not belong to the superfamily of G-protein-coupled receptors.  相似文献   

12.
In the present study, we used dual-probe microdialysis to investigate the effects of intrastriatal perfusion with neurotensin (NT) on striatal and pallidal glutamate and GABA release. The role of the pallidal GABAA receptor in the intrastriatal NT-induced increase in pallidal glutamate release was also investigated. Intrastriatal NT (100 and 300 nM) increased striatal glutamate and GABA (100 nM, 155 +/- 9 and 141 +/- 6%, respectively; 300 nM, 179 +/- 8 and 166 +/- 11%, respectively) release, as well as pallidal glutamate and GABA (100 nM, 144 +/- 8 and 130 +/- 5%; 300 nM, 169 +/- 9 and 157 +/- 8%, respectively) release. These effects were dose-dependently antagonized by the NT receptor antagonist 2-[(1-(7-chloro-4-quinolinyl)-5-(2, 6-dimethoxy-phenyl)pyrazol-3-yl)carboxylamino]tricyclo)3.3.1 .1.3. 7)-decan-2-carboxylic acid (SR48692). Intrasubthalamic injection of the GABAA receptor antagonist (-)-bicuculline (10 pmol/100 nl, 30 sec) rapidly increased pallidal glutamate release, whereas the intrastriatal NT-induced increase in pallidal glutamate release was counteracted by intrapallidal perfusion with (-)-bicuculline, suggesting that an increase in striopallidal GABA-mediated inhibition of the GABAergic pallidal-subthalamic pathway results in an increased glutamatergic drive in the subthalamic-pallidal pathway. These results demonstrate a tonic pallidal GABA-mediated inhibition of excitatory subthalamic-pallidal neurons and strengthen the evidence for a functional role of NT in the regulation of glutamate and GABA transmission in the basal ganglia. The ability of intrastriatal SR48692 to counteract the NT-induced increase in both striatal and pallidal glutamate and GABA release suggests that blockade of the striatal NT receptor may represent a possible new therapeutic strategy in the treatment of those hypokinetic disorders implicated in disorders of the indirect pathway mediating motor inhibition.  相似文献   

13.
We intended to determine whether the effect of neurotensin (NT) on K+ and electrically evoked [3H]dopamine (DA) release from rat and guinea-pig striatal slices involved different mechanisms and/or receptors. In the two species, NT and three NT agonists were found to exhibit different relative potencies to enhance K+- and electrically-evoked [3H]DA release. NT(1-13) increased [3H]DA release with EC50 values in the nanomolar range and Emax values in the range of 100% of control. NT(8-13) and Eisai hexapeptide were both as active as NT(1-13) under K+ depolarization, but did not exceed 40% of the NT(1-13) effect under electrical depolarization. In rats, when [3H]DA release was stimulated with two successive K+ depolarizations, in the presence of NT(1-13), the NT effect during the second exposure to K+ was drastically decreased, suggesting that the NT receptor was desensitized. The desensitization process was essentially observed on Emax values, EC50 values being weakly affected. Similar results were obtained in guinea pig. In contrast, with two electrical depolarizations or with two different depolarizations (K+ followed by electrical), the NT effect during the second depolarization was not significantly affected. Concerning NT antagonists, SR 48692 antagonized with IC50 values in the nanomolar range the NT(1-13) stimulated K+-evoked [3H]DA release but did not affect, up to 10(-6) M, the NT(1-13) enhancement of electrically stimulated [3H]DA release. On the contrary, SR 142948A antagonized the NT(1-13) effect on K+- and electrically-evoked [3H]DA release. In conclusion, these results suggest the possible existence of potentially distinct neurotensin receptors differentially involved in the control exerted by NT on DA release under KCl vs electrical depolarization.  相似文献   

14.
OBJECTIVE AND DESIGN: The ability of neurotensin (NT) at nmolar levels to stimulate exocytosis of the mast cell suggested that it could play a role in neuro-immune-endocrine interactions. The inhibition by a specific receptor antagonist of NT's mast cell stimulation suggested the presence of a specific mast cell NT receptor. We have here employed several probes to determine if a specific neurotensin receptor was present on rat serosal mast cells. MATERIAL: Serosal mast cells were isolated from the peritoneal and pleural cavities of male Sprague-Dawley rats. METHODS: Immunocytochemistry with an antibody raised against the C-terminal peptide of the neurotensin receptor was utilized. The same antibody was employed in immunoblotting following SDS gel electrophoresis of mast cell extracts. An RNA probe for ribonuclease protection assays (RPA) was prepared using the rat brain neurotensin receptor cDNA and polymerase chain reaction was carried out using primers based on the rat brain neurotensin receptor sequence. RESULTS: Mast cells showed specific staining with the anti-neurotensin receptor antibody and this same antibody revealed a protein on SDS gels migrating as a 70 kDa species. Ribonuclease protection assays revealed the predicted protected fragment at approximately 450 bp while PCR amplification gave a major product at 843 bp. CONCLUSIONS: These results indicate that a specific neurotensin receptor is present on the rat mast cell.  相似文献   

15.
Neuroleptic drugs such as haloperidol (H) induce a rapid increase in neurotensin/neuromedin N (NT/N) gene expression in the dorsolateral striatum (DLSt) and nucleus accumbens (NA) in young adult rats. This effect may be mediated by post-receptor effectors that are activated by dopamine D2 receptor antagonism. The regional pattern of induction of neurotensin gene expression correlates with the side effect profile of particular neuroleptics. As motor side effects of H differ in aged animals, we hypothesized that the regional expression of the neurotensin gene may differ between young and old animals. We administered H or saline acutely to 3, 14, and 25 month-old Fischer 344 rats, followed by in situ hybridization and quantitative autoradiography for NT/N mRNA. There was a significant age effect on the H-induced NT/N mRNA response in the DLSt, but not the NA, of older animals. In addition to the blunted NT/N mRNA response, significant decreases in D2 receptor mRNA were observed in the lateral striatum of another group of young, middle-aged, and aged rats. Age-related blunting of the NT/N mRNA response to H in the DLSt may be due in part to a decrease in D2 receptors in this structure.  相似文献   

16.
Neurotensin has bipolar (facilitatory and inhibitory) effects on pain modulation that may physiologically exist in homeostasis. Facilitation predominates at low (picomolar) doses of neurotensin injected into the rostroventral medial medulla (RVM), whereas higher doses (nanomolar) produce antinociception. SR 48692, a neurotensin receptor antagonist, discriminates between receptors mediating these responses. Consistent with its promotion of pain facilitation, the minimal antinociceptive responses to a 30-pmol dose of neurotensin microinjected into the RVM were markedly enhanced by prior injection of SR 48692 into the site (detected using the tail-flick test in awake rats). SR 48692 had a triphasic effect on the antinociception from a 10-nmol dose of neurotensin. Antinociception was attenuated by femtomolar doses, attenuation was reversed by low picomolar doses (corresponded to those blocking the pain-facilitatory effect of neurotensin) and the response was again blocked, but incompletely, by higher doses. The existence of multiple neurotensin receptor subtypes may explain these data. Physiologically, pain facilitation appears to be a prominent role for neurotensin because the microinjection of SR 48692 alone causes some antinociception. Furthermore, pain-facilitatory (i.e., antianalgesic) neurotensin mechanisms dominate in the pharmacology of opioids; the response to morphine administered either into the PAG or systemically was potentiated only by the RVM or systemic injection of SR 48692. On the other hand, reversal of the enhancement of antinociception occurred under certain circumstances with SR 48692, particularly after its systemic administration.  相似文献   

17.
1. To investigate the structure-activity relationships of alpha-adrenoceptor agonists for the alpha 1-adrenoceptor subtypes, we have compared the imidazoline class of compounds, oxymetazoline and cirazoline, with the phenethylamine, noradrenaline, in their affinities and also in their intrinsic activities in Chinese hamster ovary (CHO) cells stably expressing the cloned human alpha 1-adrenoceptor subtypes (alpha 1a-, alpha 1b-, and alpha 1d-subtypes). 2. Radioligand binding studies with [125I]-HEAT showed that cirazoline and oxymetazoline had higher affinities at alpha 1a-subtype than at alpha 1b- and alpha 1d-subtypes, while noradrenaline had higher affinity at the alpha 1d-subtype than at alpha 1a- and alpha 1b-subtypes. 3. In functional studies, cirazoline caused transients of cytosolic Ca2+ concentrations ([Ca2+]i response) in a concentration-dependent manner and developed a maximal response similar to that to noradrenaline in CHO cells expressing the alpha 1a-subtype, while it acted as a partial agonist at alpha 1b- and alpha 1d-adrenoceptors. Oxymetazoline, on the other hand, was a weak agonist at alpha 1a-adrenoceptors, and has no intrinsic activity at the other subtypes. 4. Using the phenoxybenzamine inactivation method, the relationships between receptor occupancy and noradrenaline-induced [Ca2+]i response for alpha 1a- and alpha 1d-subtypes were found to be linear, whereas it was moderately hyperbolic for the alpha 1b-subtype, indicating the absence of receptor reserves in CHO cells expressing alpha 1a- and alpha 1d-subtypes while there exists a small receptor reserve for CHO cells expressing the alpha 1b-subtype. 5 In summary, our data obtained in cells exclusively expressing a single receptor subtype support the idea that the relative role of agonist affinity and intrinsic activity may vary depending on the subtype of alphal-adrenoceptor.  相似文献   

18.
Kinin receptors are classified as B1 and B2 based upon agonist and antagonist potencies and cloning and expression studies. Using sequences from human and rat bradykinin B2 receptors, polymerase chain reaction (PCR) was utilized to isolate cDNA from guinea pig lung. The receptor obtained is predicted to have 372 amino acids and shares > 80% sequence homology with human, rat, rabbit and mouse B2 receptors. In competition binding experiments in Chinese hamster ovary (CHO-K1) cells in which the guinea pig cDNA was expressed, [3H]bradykinin was displaced by kinin receptor ligands with an order of potency consistent with a B2 subtype. In CHO cells expressing the guinea pig receptor, bradykinin caused a concentration 45Ca2+ efflux. A B1 receptor agonist, desArg9-bradykinin, also caused 45Ca2+ efflux but with a potency several orders of magnitude lower than bradykinin. Curiously, several B1 and B2 receptor antagonists induced 45Ca2+ efflux, indicating that this receptor may be coupled differently in CHO cells than in native tissues.  相似文献   

19.
Galanin is a neuropeptide that activates specific receptors to modulate several physiological functions including food intake, nociception, and learning and memory. The molecular nature of the interaction between galanin and its receptors and the fate of the galanin/receptor complex after the binding event are not understood. A fluorescein-N-galanin (F-Gal) was generated to measure the interaction between galanin and rat GalR1 galanin receptor (rGalR1) and rGalR1-mediated ligand internalization using flow cytometry in transfected Chinese hamster ovary (CHO) cells. Like galanin, F-Gal bound rGalR1 with high affinity and stimulated intracellular signaling events. Fluorescence quenching by soluble KI of rGalR1-bound F-Gal revealed a highly protected environment around the fluorescein, suggesting that the N-terminal portion of galanin, which constitutes the binding site of galanin for the receptor, binds to a protected hydrophobic binding pocket within the receptor. Exposure to F-Gal stimulated rapid (t1/2 approximately 10 min) and extensive (78%) internalization of surface F-Gal into rGalR1/CHO cells at 37 degreesC but not at 0 degreesC. In addition, the internalization did not occur in parental CHO cells at either 0 or 37 degreesC and was inhibited by addition of 0.25 M sucrose in the medium, indicating a GalR1-mediated energy-requiring endocytic process. These results revealed a hydrophobic interaction between galanin and the GalR1 receptor, which is in contrast to those of other G protein-coupled receptors that mainly require hydrophilic interaction with their peptide ligands near or outside the plasma membrane surface, and illustrated that the initial binding interaction is followed by rapid cellular internalization of the agonist/GalR1 complex.  相似文献   

20.
Based on both binding and functional data, this study introduces SR 144528 as the first, highly potent, selective and orally active antagonist for the CB2 receptor. This compound which displays subnanomolar affinity (Ki = 0.6 nM) for both the rat spleen and cloned human CB2 receptors has a 700-fold lower affinity (Ki = 400 nM) for both the rat brain and cloned human CB1 receptors. Furthermore it shows no affinity for any of the more than 70 receptors, ion channels or enzymes investigated (IC50 > 10 microM). In vitro, SR 144528 antagonizes the inhibitory effects of the cannabinoid receptor agonist CP 55,940 on forskolin-stimulated adenylyl cyclase activity in cell lines permanently expressing the h CB2 receptor (EC50 = 10 nM) but not in cells expressing the h CB1 (no effect at 10 microM). Furthermore, SR 144528 is able to selectively block the mitogen-activated protein kinase activity induced by CP 55,940 in cell lines expressing h CB2 (IC50 = 39 nM) whereas in cells expressing h CB1 an IC50 value of more than 1 microM is found. In addition, SR 144528 is shown to antagonize the stimulating effects of CP 55,940 on human tonsillar B-cell activation evoked by cross-linking of surface Igs (IC50 = 20 nM). In vivo, after oral administration SR 144528 totally displaced the ex vivo [3H]-CP 55,940 binding to mouse spleen membranes (ED50 = 0.35 mg/kg) with a long duration of action. In contrast, after the oral route it does not interact with the cannabinoid receptor expressed in the mouse brain (CB1). It is expected that SR 144528 will provide a powerful tool to investigate the in vivo functions of the cannabinoid system in the immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号