首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A strategy for improving the specific stiffness of silicon carbide (SiC) ceramics by adding B4C was developed. The addition of B4C is effective because (1) the mass density of B4C is lower than that of SiC, (2) its Young’s modulus is higher than that of SiC, and (3) B4C is an effective additive for sintering SiC ceramics. Specifically, the specific stiffness of SiC ceramics increased from ~142 × 106 m2?s?2 to ~153 × 106 m2?s?2 when the B4C content was increased from 0.7 wt% to 25 wt%. The strength of the SiC ceramics was maximal with the incorporation of 10 wt% B4C (755 MPa), and the thermal conductivity decreased linearly from ~183 to ~81 W?m?1?K?1 when the B4C content was increased from 0.7 to 30 wt%. The flexural strength and thermal conductivity of the developed SiC ceramic containing 25 wt% B4C were ~690 MPa and ~95 W?m?1?K?1, respectively.  相似文献   

2.
The electrical, thermal, and mechanical properties of porous SiC ceramics with B4C-C additives were investigated as functions of C content and sintering temperature. The electrical resistivity of porous SiC ceramics decreased with increases in C content and sintering temperature. A minimal electrical resistivity of 4.6 × 10?2 Ω·cm was obtained in porous SiC ceramics with 1 wt% B4C and 10 wt% C. The thermal conductivity and flexural strength increased with increasing sintering temperature and showed maxima at 4 wt% C addition when sintered at 2000 °C and 2100 °C. The thermal conductivity and flexural strength of porous SiC ceramics can be tuned independently from the porosity by controlling C content and sintering temperature. Typical electrical resistivity, thermal conductivity, and flexural strength of porous SiC ceramics with 1 wt% B4C-4 wt% C sintered at 2100 °C were 1.3 × 10?1 Ω·cm, 76.0 W/(m·K), and 110.3 MPa, respectively.  相似文献   

3.
The effects of the boron carbide (B4C) content and sintering atmosphere on the electrical, thermal, and mechanical properties of porous silicon carbide (SiC) ceramics were investigated in the porosity range of 58.3%–70.3%. The electrical resistivities of the nitrogen-sintered porous SiC ceramics (∼10–1 Ω·cm) were two orders of magnitude lower than those of argon-sintered porous SiC ceramics (∼101 Ω·cm). Both the thermal conductivities (3.3–19.8 W·m–1·K–1) and flexural strengths (8.1–32.9 MPa) of the argon- and nitrogen-sintered porous SiC ceramics increased as the B4C content increased, owing to the decreased porosity and increased necking area between SiC grains. The electrical resistivity of the porous SiC ceramics was primarily controlled by the sintering atmosphere owing to the N-doping from the nitrogen atmosphere, and secondarily by the B4C content, owing to the B-doping from the B4C. In contrast, the thermal conductivity and flexural strength were dependent on both the porosity and necking area, as influenced by both the sintering atmosphere and B4C content. These results suggest that it is possible to decouple the electrical resistivity from the thermal conductivity by judicious selection of the B4C content and sintering atmosphere.  相似文献   

4.
SiC ceramics sintered with yttria were successfully joined without an interlayer by conventional hot pressing at lower temperatures (2000–2050 °C) compared to those of the sintering temperatures (2050–2200 °C). The joined SiC ceramics sintered with 2000 ppm Y2O3 showed almost the same thermal conductivity (˜198 Wm−1 K−1), fracture toughness (3.7 ± 0.2 MPa m1/2), and hardness (23.4 ± 0.8 GPa) as those of the base material, as well as excellent flexural strength (449 MPa). In contrast, the joined SiC ceramics sintered with 4 wt% Y2O3 showed very high thermal conductivity (˜204 Wm−1 K−1) and excellent flexural strength (˜505 MPa). Approximately 16–22% decreases in strength compared to those of the base SC materials were observed in both joined ceramics, due to the segregation of liquid phase at the interface. This issue might be overcome by preparing well-polished and highly flat surfaces before joining.  相似文献   

5.
The effects of SiC whisker addition into nano-SiC powder-carbon black template mixture on flexural strength, thermal conductivity, and specific flow rate of porous silica-bonded SiC ceramics were investigated. The flexural strength of 1200°C-sintered porous silica-bonded SiC ceramics increased from 9.5 MPa to 12.8 MPa with the addition of 33 wt% SiC whisker because the SiC whiskers acted as a reinforcement in porous silica-bonded SiC ceramics. The thermal conductivity of 1200°C-sintered porous silica-bonded SiC ceramics monotonically increased from 0.360 Wm–1K–1 to 1.415 Wm–1K–1 as the SiC whisker content increased from 0 to 100 wt% because of the easy heat conduction path provided by SiC whiskers with a high aspect ratio. The specific flow rate of 1200°C-sintered porous SiC ceramics increased by two orders of magnitude as the SiC whisker content increased from 0 to 100 wt%. These results were primarily attributed to an increase in pore size from 125 nm to 565 nm and secondarily an increase in porosity from 49.9% to 63.6%. In summary, the addition of 33 wt% SiC whisker increased the flexural strength, thermal conductivity, and specific flow rate of porous silica-bonded SiC ceramics by 35%, 133%, and 266%, respectively.  相似文献   

6.
Zirconia-toughened alumina (ZTA) ceramics with high mechanical properties were sintered by hot-pressing method using SiC particles (SiCp) and SiC whiskers (SiCw) as the reinforcing agents simultaneously. The influences of sintering temperature, SiCp, and SiCw contents on the microstructure and mechanical properties of ZTA ceramics were investigated. It was found that both SiCp and SiCw could contribute to grain refinement significantly and promote the mechanical properties of the ceramics. However, the excess addition of SiCp or SiCw led to the formation of pores with large sizes and degraded the mechanical properties instead. When 13 wt% SiCp was introduced, the maximum flexural strength of 1180.0 MPa and fracture toughness of 15.9 MPa·m1/2 were obtained, whereas the maximum flexural strength of 1314.0 MPa and fracture toughness of 14.7 MPa·m1/2 were achieved at 20 wt% SiCw. Interestingly, the simultaneous addition of SiCp and SiCw could further improve the mechanical properties, and the highest flexural strength of 1334.0 MPa and fracture toughness of 16.0 MPa·m1/2 were achieved at a SiCw/SiCp ratio of 16/4. The reinforcement mechanisms in the ceramics mainly included the phase transformation toughening of ZrO2, the crack deflection and bridging of SiCp and SiCw, and the pull-out of SiCw.  相似文献   

7.
《Ceramics International》2023,49(1):145-153
Full-dense B4C-based ceramics with excellent mechanical properties were fabricated using spark plasma sintering with Mg2Si as a sintering aid at a low temperature of 1675 °C while applying a uniaxial pressure of 50 MPa. The effect of Mg2Si addition on the densification behaviours, mechanical properties and microstructure of as-sintered ceramics were investigated. Not only did the formation of ultra-fine grained SiC using the in-situ reaction effectively inhibit the growth of B4C grains, but it also contributed to the strength and toughness of the resultant ceramics. Additionally, microalloying Mg imparted more metal bonding characteristics to the B4C matrix, thereby improving their ductility. The results indicate that the composite containing 7 wt% Mg2Si had excellent mechanical properties, including a light weight of 2.54 g/cm3, Vickers hardness of 34.3 GPa, fracture toughness of 5.09 MPa m1/2 and flexural strength of 574 MPa.  相似文献   

8.
Two different SiC ceramics with a new additive composition (1.87 wt% Y2O3–Sc2O3–MgO) were developed as matrix materials for fully ceramic microencapsulated fuels. The mechanical and thermal properties of the newly developed SiC ceramics with the new additive system were investigated. Powder mixtures prepared from the additives were sintered at 1850 °C under an applied pressure of 30 MPa for 2 h in an argon or nitrogen atmosphere. We observed that both samples could be sintered to ≥99.9% of the theoretical density. The SiC ceramic sintered in argon exhibited higher toughness and thermal conductivity and lower flexural strength than the sample sintered in nitrogen. The flexural strength, fracture toughness, Vickers hardness, and thermal conductivity values of the SiC ceramics sintered in nitrogen were 1077 ± 46 MPa, 4.3 ± 0.3 MPa·m1/2, 25.4 ± 1.2 GPa, and 99 Wm−1 K−1 at room temperature, respectively.  相似文献   

9.
The effects of the boron nitride (BN) content on the electrical, thermal, and mechanical properties of porous SiC ceramics were investigated in N2 and Ar atmospheres. The electrical resistivity was predominantly controlled by the sintering atmosphere and secondarily by the BN concentration, whereas the thermal conductivity and flexural strength were more susceptible to changes in the porosity and necking area between the SiC grains. The electrical resistivities of argon-sintered porous SiC ceramics (6.3 × 105 – 1.6 × 106 Ω·cm) were seven orders of magnitude higher than those of nitrogen-sintered porous SiC ceramics (1.5 × 10−1 – 6.0 × 10−1 Ω·cm). The thermal conductivity and flexural strength of the argon-sintered porous SiC ceramics increased from 8.4–11.6 W·m−1 K−1 and from 9.3–28.2 MPa, respectively, with an increase in the BN content from 0 to 1.5 vol%, which was attributed to the increase in necking area and the decrease in porosity.  相似文献   

10.
Porous SiC ceramic is considered as a suitable material for hot gas filtration, microfiltration, and many others industrial applications. However, full utilizations of porous SiC ceramics have been limited by high-processing costs. In this study, mullite-bonded porous SiC ceramics membranes were prepared using commercial SiC powder, alumina, clay, and different sacrificial pore formers. The effect of different pore formers on the microstructure, mechanical strength, porosity and pore size distribution, air, and water permeability of porous SiC ceramics were investigated. The average pore diameter, porosities, and flexural strength of the final ceramics varied in the range 3.7-6.5 µm, 38-50 vol. %, and 28-38 MPa, respectively, depending on the characteristics of pore former. The Darcian (k1) and non-Darcian (k2) permeability evaluated from air permeation behavior at room temperature was found to vary from 1.48 × 10−13 to 4.64 × 10−13 m2 and 1.46 × 10−8 to 6.51 × 10−8 m, respectively. All membranes showed high oil rejection rate (89%-93%) from feed wastewater with oil concentration of 1557 mg/L. The membrane with porosity ~48 vol% and mechanical strength 31.5 MPa showed and highest pure water permeability of 13 298 Lm−2h−1bar−1.  相似文献   

11.
《Ceramics International》2017,43(5):4062-4067
The resorcinol-formaldehyde (RF) gel-casting system is employed for the first time to fabricate a hierarchical porous B4C/C preform, which was subsequently used for the fabrication of reaction bonded boron carbide (RBBC) composites via a liquid silicon infiltration process. The effect of the carbon content and carbon structures of this perform on the microstructures and mechanical properties of B4C/C preform and the resultant RBBC composites is reported. The B4C/C preform (16 wt% carbon) exhibit a strength of 34±1 MPa. The obtained RBBC composites shown uniform microstructure is consisted of SiC particles bonded boron carbide scaffold and an interpenetrating residual silicon phase. The Vickers hardness, flexural strength and fracture toughness of the RBBC composites (16 wt% carbon) are 24 GPa, 452 MPa and 4.32 MPa m1/2, respectively.  相似文献   

12.
《Ceramics International》2021,47(21):30514-30522
A reliable yellow phosphor converter that can be efficiently excited by a 405 nm bluish violet laser is in high demand for laser illumination applications. A NaAlSiO4:Eu2+ phosphor with a quantum efficiency reaching 92% was obtained using LTA zeolite as the raw material. NaAlSiO4:Eu2+ ceramics with suitable porosities for laser illumination were prepared from the phosphor powders via spark plasma sintering. The ceramics lost only 2% of the quantum efficiency compared to the powders, maintained good thermal quenching properties (30% drop at 150 °C), and showed good thermal conductivity (2.02 W‧m−1‧K−1). The NaAlSiO4:Eu2+ ceramic with 405 nm bluish violet lasers, with the increase in laser power density to 9.15 W/mm2, exhibited an increasing luminous flux (23.83–70.26 lm) and maintained a stable luminous efficacy (47.7–46.8 lm/W), and the temperature distribution of the ceramic remained uniform and stable under long-time laser irradiation. This indicates that the nepheline-phase NaAlSiO4:Eu2+ ceramic is a promising material for laser illumination.  相似文献   

13.
The hot pressing process of monolithic Al2O3 and Al2O3-SiC composites with 0-25 wt% of submicrometer silicon carbide was done in this paper. The presence of SiC particles prohibited the grain growth of the Al2O3 matrix during sintering at the temperatures of 1450°C and 1550°C for 1 h and under the pressure of 30 MPa in vacuum. The effect of SiC reinforcement on the mechanical properties of composite specimens like fracture toughness, flexural strength, and hardness was discussed. The results showed that the maximum values of fracture toughness (5.9 ± 0.5 MPa.m1/2) and hardness (20.8 ± 0.4 GPa) were obtained for the Al2O3-5 wt% SiC composite specimens. The significant improvement in fracture toughness of composite specimens in comparison with the monolithic alumina (3.1 ± 0.4 MPa.m1/2) could be attributed to crack deflection as one of the toughening mechanisms with regard to the presence of SiC particles. In addition, the flexural strength was improved by increasing SiC value up to 25 wt% and reached 395 ± 1.4 MPa. The scanning electron microscopy (SEM) observations verified that the increasing of flexural strength was related to the fine-grained microstructure.  相似文献   

14.
The effect of 0–12 wt% AlN addition on the electrical resistivity of SiC ceramics pressureless sintered with 0.7 wt% B4C and 2.5 wt% C additives was investigated. The elemental analysis of SiC grains revealed a codoping of Al and N in the SiC lattice with a higher N concentration with 1 wt% AlN addition and a higher Al concentration with 12 wt% AlN addition. The electrical resistivity decreased by four orders of magnitude (1.7 × 105 → 8.3 × 101 Ω cm) with 1 wt% AlN addition due to the increased carrier density (1.7 × 1010 → 2.3 × 1015 cm−3) caused by excess N-derived donors. However, subsequent AlN addition (4 → 12 wt%) led to an increase (2.9 × 103 → 1.2 × 104 Ω‧cm) in electrical resistivity due to (1) increased Al dopants which act as deep acceptors for trapping N-derived carriers causing a decrease in carrier density (2.3 × 1015 → 5.9 × 1013 cm−3), (2) the formation of electrically insulating SiC-AlN solid solution, and (3) the presence of electrically insulating AlN grains at the grain boundaries.  相似文献   

15.
The thermal and electrical properties of newly developed additive free SiC ceramics processed at a temperature as low as 1850 °C (RHP0) and SiC ceramics with 0.79 vol.% Y2O3-Sc2O3 additives (RHP79) were investigated and compared with those of the chemically vapor-deposited SiC (CVD-SiC) reference material. The additive free RHP0 showed a very high thermal conductivity, as high as 164 Wm−1 K−1, and a low electrical resistivity of 1.2 × 10−1 Ω cm at room temperature (RT), which are the highest thermal conductivity and the lowest electrical resistivity yet seen in sintered SiC ceramics processed at ≤1900 °C. The thermal conductivity and electrical resistivity values of RHP79 were 117 Wm−1 K−1 and 9.5 × 10−2 Ω cm, respectively. The thermal and electrical conductivities of CVD-SiC parallel to the direction of growth were ∼324 Wm−1 K−1 and ∼5 × 10−4Ω−1 cm−1 at RT, respectively.  相似文献   

16.
This paper reports the joining of liquid-phase sintered SiC ceramics using a thin SiC tape with the same composition as base SiC material. The base SiC ceramics were fabricated by hot pressing of submicron SiC powders with 4 wt% Al2O3–Y2O3–MgO additives. The base SiC ceramics were joined by hot-pressing at 1800-1900°C under a pressure of 10 or 20 MPa in an argon atmosphere. The effects of sintering temperature and pressure were examined carefully in terms of microstructure and strength of the joined samples. The flexural strength of the SiC ceramic which was joined at 1850°C under 20 MPa, was 343 ± 53 MPa, higher than the SiC material (289 ± 53 MPa). The joined SiC ceramics showed no residual stress built up near the joining layer, which was evidenced by indentation cracks with almost the same lengths in four directions.  相似文献   

17.
SiC-30vol%VB2 ceramic composite was pressureless densified at 2150 °C with excess B4C and C as sintering aids after in-situ formation of VB2 in SiC matrix. The sintered bulk gained a considerably high fracture toughness of 7.0 ± 0.4 MPa m1/2, which was ∼2.4 times as high as that of the monolithic SiC ceramic, owing to the existences of weak heterophase boundaries, thermal residual stresses and microcracks. Meanwhile, since the VB2 particle has a lower elastic modulus than SiC and significantly suppressed the grain growth of SiC, the composite exhibited a high flexural strength of 458 ± 36 MPa and a relatively low Young’s modulus of 356 ± 6 GPa, resulting in an increase of ∼59.3% in mechanical strain tolerance (1.29 × 10−3) compared with that of single-phase SiC ceramic. Besides, the residual stresses and microcracks also induced a lower-than-expected Vickers hardness of 20.8 ± 0.5 GPa in the composite.  相似文献   

18.
《Ceramics International》2023,49(3):4403-4411
B4C-20 wt% TiB2 ceramics were fabricated by hot pressing B4C and ball-milled TiB2 powder mixtures. The effects of the TiB2 particle size on the microstructure and mechanical properties were investigated. The results showed that the TiB2 particle size played an important role in the mechanical properties of the B4C–TiB2 ceramics. In addition, SiO2 introduced by ball milling was beneficial for densification but detrimental to the mechanical properties of the B4C–TiB2 ceramics. The typical values of relative density, hardness, flexural strength, and fracture toughness of the ceramics were 99.20%, 35.22 GPa, 765 MPa, and 7.69 MPa m1/2, respectively. The toughening mechanisms of the B4C–TiB2 ceramics were explained by crack deflection and crack branching. In this study, the effects of high pressure and temperature caused liquefying SiO2 to migrate to the surface of B4C–TiB2 and react with diffused carbon source in the graphite foil to form a 30 μm thick SiC layered structure, which improved the high-temperature oxidation resistance of the material. The unique SiC layered structure overcame the insufficient oxidation resistance of B4C and TiB2, thereby improving the oxidation resistance of the ceramics under high-temperature service conditions.  相似文献   

19.
《Ceramics International》2020,46(17):27283-27291
In this study, boron carbide-metallic boride (B4C-MeBx, Me = Ti, Zr, Nb, Ta, or W) multiphase ceramics were fabricated via in situ pressureless sintering at 2250 °C for 1 h. The effects of transition metal carbides, namely, TiC, ZrC, NbC, TaC, and WC, on the phase composition, microstructure, and mechanical properties of the ceramics were investigated. The results showed that MeC could facilitate the sintering densification of B4C by distributing second-phase particles uniformly throughout the B4C. Additionally, the main phases observed were B4C and (Me, W)Bx (Me = Ti, Zr, Nb, or Ta) due to the doping of a small amount of WC during the ball milling process. As a result, the mechanical properties of B4C-MeBx showed significant improvements when compared with those of single-phase B4C ceramics. B4C–NbB2 ceramics were found to exhibit the best mechanical properties, with an elastic modulus of 393.0 GPa, a hardness of 28.7 GPa, a flexural strength of 368.0 MPa, and a fracture toughness of 6.94 MPa m1/2.  相似文献   

20.
In situ toughened B12(C, Si, B)3–SiC ceramics were successfully fabricated via the liquid silicon infiltration process. Two types of B12(C, Si, B)3 phases, with high and low Si contents, respectively, and plate-like SiC particles were formed by the reaction between B4C and Si. The in situ toughening mechanism involved two effects: the multiple crack deflections caused by the increased grain boundaries, and the pullout and rupture of a significant amount of plate-like SiC particles. Block ceramics with a high fracture toughness of 6.5 ± 0.5 MPa·m1/2 were fabricated via the in situ toughening mechanism. A strong interface bond was present between the high- and low-B4C-content layers in the laminated ceramics, which led to residual compressive stress inside the materials. As a result, the laminated structural design enhanced the fracture toughness to 7.5 ± 0.5 MPa·m1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号