首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yb- and Y-doped α-SiAlON ceramics were effectively bonded by spark plasma sintering in less than 20 min without using any interlayer materials at 1650–1700 °C. The microstructures and mechanical properties of the joints were investigated by means of SEM, STEM, EDX, and three-point bending tests. The results showed that α-SiAlON joint formation was accompanied by fundamental rare earth diffusion. The intergranular liquids in the α-SiAlON ceramics at the bonding temperatures provided the diffusion paths for the species. α-SiAlON grain growth across the joining interfaces modified the joint microstructures to secure high bonding strength.  相似文献   

2.
In this study, α- and α/β-SiAlON materials, doped with Y2O3 and Nd2O3, were sintered using two different sintering processes: spark plasma sintering (SPS) and gas pressure sintering (GPS). The wear and mechanical properties of the samples were compared related to the composition, additives and sintering processes. The results show that the hardness was not affected by the processing type whereas the toughness values were lower for spark plasma sintered materials than gas pressure sintered materials. This can be explained by the changed microstructure of the two different types of material. Additionally, α/β-SiAlON materials, sintered using gas pressure sintering, showed a lower wear than the spark plasma sintered materials. The results of the wear test were compared with β-Si3N4 materials and it was observed that α/β-SiAlON, sintered by GPS, has better wear properties than the tested β-Si3N4 materials.  相似文献   

3.
4.
α-SiC/α-SiAlON composites with 80 wt% α-SiC (6H phase) were fabricated by spark plasma sintering at 1800-2000 °C in a 0.6 atm nitrogen atmosphere. The effects of the temperatures on the phase development, microstructures and mechanical properties were investigated. The results showed the Si3N4, AlN, Al2O3, and Y2O3 particles were isolated by the 6H-SiC to prevent α-SiAlON formation at 1800 °C. The Si3N4 decomposed at 1900 °C and above, thus added Si in the phase compositions. The α-SiC grains grew anisotropic in the sintering liquids at 1800 °C and 1900 °C, forming the self-reinforcing microstructures, and accordingly increased the flexural strength and fracture toughness. In cooling down immediately after the temperature reached 2000 °C, a transitory hold at 1700 °C transformed the 6H-SiC into the 3C polytype in 30 s. The electric current was suspected of activating this polytype transformation.  相似文献   

5.
The aim of this work was the analysis of the experimental results of a transparent alumina (BMA15) ceramic which was fabricated by Spark Plasma Sintering (SPS) from nanopowder (BMA15, Baikowski Chimie, France), at different temperatures (1200°C, 1250°C, 1300°C). With the application of a maximum uniaxial pressure of 73 MPa during all the fabrication-cycle (more than 3 hours). We sought an optimal sintering temperature combining better optical and mechanical properties of our pellets. The sintered alumina (BMA15) has a crystalline and dense microstructure. The samples sintered at 1200°C exhibit the best optical properties, in particular: good real inline transmission (RIT) and an optical gap greater than those of the samples sintered at 1250°C and 1300°C. Due to their low density, the Young modulus of alumina sintered at 1200 °C, deduced by ultrasound, has a low value which is about 385 GPa. Similarly, its small grain size gives it a better Vickers hardness ~ 21 GPa. Therefore, the value of the coefficient of friction μ stabilizes around the mean value of 0.21.  相似文献   

6.
Tantalum carbide (TaC) nanopowders were synthesized by a novel method combining the sol–gel and spark plasma sintering (SPS) processes using tantalum pentachloride (TaCl5) and phenolic resin as the sources of tantalum (Ta) and carbon (C), respectively. Gels of Ta-containing chelate with good uniformity and high stability were prepared by solution-based processing. The products with the structure of carbon-coated tantalum pentoxide (Ta2O5) were obtained after pyrolysis at 800?°C. Further heat treatment by SPS resulted in the fast formation of TaC at a relatively low temperature. The effects of the C/Ta molar ratio in the raw materials and the heat treatment temperature on the prepared powders were investigated. With increase in the C/Ta molar ratio from 3.75 to 4.25, the synthesis temperature, oxygen content and average crystallite size of the TaC powders decreased. Furthermore, the oxygen content of the powders prepared at the C/Ta molar ratio of 4.25 could be reduce by increasing the heat treatment temperature from 1400° to 1600°C, which unfortunately also induced a mean crystallite size increase from 30 to 100?nm. The TaC powders obtained at a comparatively low C/Ta molar ratios of 4.25 at 1500?°C had an average particle size of about 50?nm and a low oxygen content of about 0.43?wt%.  相似文献   

7.
《Ceramics International》2022,48(22):32730-32739
The multi-cation doped α/β-SiAlON composite ceramics tool materials were prepared via spark plasma sintering. The effects of cation type (Yb, Sm, Yb/Sm), composition, and sintering temperature on densification behavior, phase formation, microstructural evolution, and mechanical properties of α/β-SiAlON were studied. Results showed that the addition of Sm2O3 in Yb/Sm-SiAlON could decline the shrinkage temperature and accelerate the densification process due to the increased liquid phase volume and decreased viscosity. The Sm2O3 played the role of both sintering additives and stabilizing cation of α-SiAlON, which could promote the formation of α-SiAlON and the elongation of β-SiAlON, thus acquired refined α grains and large aspect ratio of β grains. The SPS-sintered multi-cation doped Yb/Sm-SiAlON with 2 wt% additional Sm2O3 possessed excellent comprehensive mechanical properties (3.40 g/cm3, 18.53 ± 0.18 GPa, and 6.13 ± 0.23 MPa m1/2).  相似文献   

8.
ZrB2–SiC composites were fabricated by spark plasma sintering (SPS) using TaSi2 as sintering additive. The volume content of SiC was in a range of 10–30% and that of TaSi2 was 10–20% in the initial compositions. The composites could be densified at 1600 °C and the core–shell structure with the core being ZrB2 and the shell containing both Ta and Zr as (Zr,Ta)B2 appeared in the samples. When the sintering temperature was increased up to 1800 °C, only (Zr,Ta)B2 and SiC phases could be detected in the samples and the core–shell structure disappeared. Generally, the composites with core–shell structure and fine-grained microstructure showed the higher electrical conductivity and Vickers hardness. The completely solid soluted composites with coarse-grained microstructure had the higher thermal conductivity and Young's modulus.  相似文献   

9.
The effects of heating method on the pyrolysis behavior, crystallinity and ceramic yield of a SiC-based precursor-derived ceramic (PDC) were investigated using commercial allylhydrido-polycarbosilane (AHPCS) precursors, spark plasma sintering (SPS) apparatus and tube furnace. The heating rate of SPS was ten times faster than that of tube furnace. Consequently, the total time of precursor impregnation and pyrolysis (PIP) process decreased distinctly after several PIP cycles. PDCs fabricated by SPS had higher crystallinity than those prepared by tube furnace. The crystallinity of PDCs was 70.4 and 65.1 %, respectively, after the pyrolysis using SPS and tube furnace at 1400℃ for 1h. The highest crystallinity of 82.92 % was achieved after the pyrolysis at 1500℃ for 2h using SPS. The ceramic yield of the precursor was not strongly affected by the heating method. This study provides a promising method for the pyrolysis of ceramic precursors with short processing time and improved thermal stability.  相似文献   

10.
This work is devoted to the analysis of the composition, microstructure and room-temperature mechanical properties of a carbonitride ceramics: the case of Ti(C,N) ceramics fabricated by spark plasma sintering (SPS). Particular attention has been given to know whether there is a possible composition change under electric field, finding all the computed lattice parameters of SPS-ed TiN1-xCx ceramics lay within tiny interval (∼TiC0.43N0.57), hence following Vegard’s law. The analysis of the strengthening effect of substitutional carbon, making use of our own results and those available in literature shows that a classical x1/2 dependence could account for experimental data. This fact reveals that a Friedel-Fleisher mode of strong localized carbon pinning points might describe the hardening effect of those impurities. However, the large scattering of experimental data and the fact that tiny deviations of stoichiometry might play a relevant role on the hardening force us to leave this as an open problem.  相似文献   

11.
《Ceramics International》2022,48(20):30376-30383
In this study, α/β-Si3N4 composite ceramics with high hardness and toughness were fabricated by adopting two different novel ternary additives, ZrN–AlN–Al2O3/Y2O3, and spark plasma sintering at 1550 °C under 40 MPa. The phase composition, microstructure, grain distribution, crack propagation process and mechanical properties of sintered bulk were investigated. Results demonstrated that the sintered α/β-Si3N4 composite ceramics with ZrN–AlN–Al2O3 contained the most α phase, which resulted in a maximum Vickers hardness of 18.41 ± 0.31 GPa. In the α/β-Si3N4 composite ceramics with ZrN–AlN–Y2O3 additives, Zr3AlN MAX-phase and ZrO phase were found and their formation mechanisms were explained. The fracture appearance presented coarser elongated β-Si3N4 grains and denser microstructure when 20 wt% TiC particles were mixed into Si3N4 matrix, meanwhile, exhibited maximum mean grain diameter of 0.98 ± 0.24 μm. As a result, the compact α/β-Si3N4 composite ceramics containing ZrN–AlN–Y2O3 additives and TiC particles displayed the optimal bending strength and fracture toughness of 822.63 ± 28.75 MPa and 8.53 ± 0.21 MPa?m1/2, respectively. Moreover, the synergistic toughening of rod-like β-Si3N4 grains and TiC reinforced particles revealed the beneficial effect on the enhanced fracture toughness of Si3N4 ceramic matrix.  相似文献   

12.
《Ceramics International》2016,42(3):3836-3848
The effects of applied pressure and temperature during spark plasma sintering (SPS) of additive-containing nanocrystalline silicon carbide on its densification, microstructure, and mechanical properties have been investigated. Both relative density and grain size are found to increase with temperature. Furthermore, with increase in pressure at constant temperature, the relative density improves significantly, whereas the grain size decreases. Reasonably high relative density (~96%) is achieved on carrying out SPS at 1300 °C under applied pressure of 75 MPa for 5 min, with a maximum of ~97.7% at 1500 °C under 50 MPa for 5 min. TEM studies have shown the presence of an amorphous phase at grain boundaries and triple points, which confirms the formation of liquid phase during sintering and its significant contribution to densification of SiC at relatively lower temperatures (≤1400 °C). The relative density decreases on raising the SPS temperature beyond 1500 °C, probably due to pores caused by vaporization of the liquid phase. Whereas β-SiC is observed in the microstructures for SPS carried out at temperatures ≤1500 °C, α-SiC evolves and its volume fraction increases with further increase in SPS temperatures. Both hardness and Young׳s modulus increase with increase in relative density, whereas indentation fracture toughness appears to be higher in case of two-phase microstructure containing α and β-SiC.  相似文献   

13.
Fully dense β-SiAlON ceramics with excellent mechanical properties and good thermal conductivity were fabricated by two-stage spark plasma sintering (SPS) processes without and with applying pressure respectively, using α-Si3N4 powder and 6 Al2O3-3 AlN-6 Y2O3 (in wt.%, label with 636), 424 and 422 additives. In the first stage SPS process without pressure, the relative dense β-SiAlON ceramics with interlock microstructures of elongated grains and density of 3.14˜3.18 g cm−3, hardness of 14.00˜14.82 GPa and fracture toughness of 6.00˜6.63 MPa m1/2 were obtained by sintering at about 1600 °C for 20 min. In the second stage SPS process at about 1425 °C for 5 min under pressure of 24 MPa, the fully dese β-SiAlON ceramics with density of 3.22˜3.24 g cm−3, high hardness of 15.68˜15.95 GPa, high fracture toughness of 6.38˜7.03 MPa m1/2 and thermal conductivity of 13.5˜19.6 Wm-1K-1 were obtained. The reaction between the samples and the graphite mold can be avoided in this fabrication method.  相似文献   

14.
《Ceramics International》2016,42(3):3745-3750
The process of densification and development of the microstructure of mullite–ZrO2/Y2O3 ceramics from mixture of Al2O3, SiO2, ZrO2 and Y2O3 by gradually adding of α–β Si3N4 nanopowder from 1 to 5 wt% by traditional and spark plasma sintering were investigated by means of differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and some ceramic and mechanical properties. The processes of DTA for all samples are characterised by a low-pitched endo-effect, when gradual mullite formation and noticeable densification at temperatures of 1200–1400 °C is started. It is testified by shrinkage and density both for traditionally and by SPS-sintered samples. The influence of the Si3N4 additive on the density characteristics is insignificant for both sintering cases. For SPS samples, the density reaches up to 3.33 g/cm3, while for traditionally sintered samples, the value is 2.55 g/cm3, and the compressive strength for SPS grows with Si3N4 additives, reaching 600 N/mm2. In the case of traditional sintering, it decreases to approximately 100 N/mm2. The basic microstructure of ceramic samples sintered in a traditional way and by SPS is created from mullite (or pseudo-mullite) crystalline formations with the incorporation of ZrO2 grains. The microstructure of ceramic samples sintered by SPS shows that mullite crystals are very densely arranged and they do not have the characteristic prismatic shape. The traditional sintering process causes the creation of voids in the microstructure, which, with an increasing amount of Si3N4 additive, are filled with mullite crystalline formations.  相似文献   

15.
A rapid method for the synthesis of Ca3Co4O9+δ powder is introduced. The procedure is a modification of the conventional citric-nitrate sol–gel method where an auto-combustion process is initiated by a controlled thermal oxidation–reduction reaction. The resulting powders inherit the advantages of a wet chemical synthesis, such as morphological and compositional homogeneity, and fine, well-defined particle sizes coming from the controlled nature of the auto-combustion. Optimized spark plasma sintering (SPS) processing conditions were determined and used to fabricate dense and highly c-axis oriented samples. The microstructure and thermoelectric transport properties were determined both parallel (||) and perpendicular (⊥) to the SPS pressure axis in order to investigate any possible anisotropy variations in the transport properties. At 800 °C, power factors of 506 μW/m K2 (⊥) and 147 μW/m K2 (||), thermal conductivities values of 2.53 W/m K (⊥) and 1.25 W/m K (||), and resulting figures-of-merit, ZT, of 0.21 (⊥) and 0.13 (||) were observed.  相似文献   

16.
A microstructure evolution model for the ceramic materials was constructed, and the spark plasma sintering parameters were optimized using the model to shorten the designing period and reduce the consumption of the material. Based on the optimized sintering parameters, the ceramic tool material with a composition of Al2O3, TiB2, and TiC proved to be a success. It verified that the materials prepared under the optimized sintering parameters exhibited excellent mechanical properties. The results showed when sintered at 1600°C, under the pressure of 40 MPa and with the holding period of 7 min, the materials with 70% Al2O3, 20% TiB2, and 10% nano-TiC possess the relatively best performance, with the hardness, fracture toughness, and flexure strength being 20.3 GPa, 10.5 MPa/m2, and 839.5 MPa, respectively.  相似文献   

17.
《Ceramics International》2022,48(2):1916-1925
The phase formation behavior of β′-SiAlON with the general formula Si6-zAlzOzN8-z was studied comprehensively for z values from 1 to 3 using spark plasma sintering (SPS) as the consolidation technique at synthesis temperatures from 1400 to 1700 °C. The samples were prepared close to the β′-SiAlON composition line: Si3N4 ? 4/3(AlN·Al2O3) in the phase diagram using (A) nano-sized amorphous Si3N4 and (B) micro-sized β-Si3N4 precursors. Field-emission scanning electron microscopy (FESEM) was used for microstructural analysis.Most compositions reached almost full density at all SPS temperatures. Compared with the micro-sized β-Si3N4 precursor, the nano-sized amorphous Si3N4 precursor accelerated the reaction kinetics, promoting the formation of dense β′-SiAlON + O′-SiAlON composites after SPS at synthesis temperatures of 1400–1500 °C. This resulted in very high values of Vickers hardness (Hv10) = 18.2–19.2 GPa for the z = 1 composition related to the hardness of the O′-SiAlON component phase.In general, for samples synthesized from nano-sized amorphous Si3N4, which were almost fully dense, containing >95% β′-SiAlON, the hardness values were 13.4–13.8 GPa with a fracture toughness of 3.5–4.6 MPa m1/2. For equivalent samples synthesized from micro-sized β-Si3N4, hardness was in the range 13.9–14.4 GPa with a fracture toughness of 4.3–4.5 MPa.m1/2. These values are comparable with fully dense β′-SiAlONs, usually containing intergranular glass phase which has been sintered by HIP and other processes at much higher temperatures for longer times.  相似文献   

18.
Bioactive beta-dicalcium silicate ceramics (β-Ca2SiO4) were fabricated by spark plasma sintering (SPS). The relative density of as-prepared β-Ca2SiO4 ceramics reached 98.1% when sintered at 1150 °C, leading to great improvement in bending strength (293 MPa), almost 10 times higher than that of the specimen prepared by conventional pressureless sintering (PLS). High fracture toughness (3.0 MPa m1/2) and Vickers hardness (5.8 GPa) of β-Ca2SiO4 ceramics were also achieved by SPS at 1150 °C. The simulated body fluid (SBF) results showed that β-Ca2SiO4 ceramics had a good in vitro bioactivity to induce hydraxyapatite (HAp) formation on their surface, which suggests that β-Ca2SiO4 ceramics are promising candidates for load-bearing bone implant materials.  相似文献   

19.
Si3N4–TiN composites were successfully fabricated via planetary ball milling of 70 mass% Si3N4 and 30 mass% Ti powders, followed by spark plasma sintering (SPS) at 1250–1350 °C. The sintering mechanism for SPS was a hybrid of dissolution–reprecipitation and viscous flow. The electrical resistivity decreased with increasing sintering temperature up to a minimum at 1250 °C and then increased with the increasing sintering temperature. The composites prepared by SPS at 1250–1350 °C could be easily machined by electrical discharge machining. Composite prepared by SPS at 1300 °C showed a high hardness (17.78 GPa) and a good machinability.  相似文献   

20.
《Ceramics International》2022,48(8):11215-11227
The main aim of this study was to apply high-energy longer mechanical milling and spark plasma sintering (SPS) techniques to produce in-situ α-Ti/TiO2/TiC hybrid composites from commercially pure-Ti (CP–Ti, HCP structure) powders. The CP-Ti powders were subjected to different milling times (0, 20, 40, 60, 80, 100, and 120 h). The results showed that the powder samples milled for 120 h produced Ti, Ti3O5, TiO, TiO2 phases, and dissolved C atoms from the process control agent (toluene) which were then converted to α-Ti, TiO2, and TiC phases (formed in-situ composites) through spark plasma sintering. This was expected due to more reactivity in the 120 h sample as longer milling introduces severe and robust structural refinements. Structural evaluations with increasing milling time were carried out using XRD, HRSEM, and HRTEM. The synthesized powders were then consolidated by SPS at pressures of 50 MPa and 1323 K for 6 min. The micro-hardness results have shown that the hardness was started to increase from 1.40 GPa to 5.56 GPa with increasing milling time due to more dislocation and pinning effect produced by grain refinement and formed TiO2/TiC intermetallic particles enhancing the strength of α-Ti matrix. The α-Ti/TiO2/TiC in-situ hybrid composite bulk sample yielded an ultimate compressive strength of 1.594 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号