首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of three dietary 4,4-desmethylsterols and two 4α-methylsterols was investigated in the free-living nematodeCaenorhabditis elegans. Dietary cholestanol was converted mostly to lathosterol. Dietary lathosterol, 7-dehydrocholesterol, 4α-methylcholest-7-enol and 4α-methylcholest-8(14)-enol each remained largely unchanged. An absolute requirement for a substantial quantity of 7-dehydrocholesterol inC. elegans did not exist.C. elegans was unable to remove a 4α-methyl group or introduce a double bond at C-5 and also demonstrated the lack of a Δ7-reductase. Its nutritional sterol requirement was satisfied by cholestanol, lathosterol or 7-dehydrocholesterol; growth was comparable to that obtained previously in media containing Δ5-sterols. However, the two 4α-methylsterols appeared to be unsatisfactory sterol nutrients. The possible physiological importance of 4α-methylsterols is discussed briefly.  相似文献   

2.
Rendeli  Nigel  Misso  Neil L. A.  Goad  L. John 《Lipids》1986,21(1):63-68
The relative rates of synthesis of 24-methylcholest-5-en-3β-ol and 24-ethylcholest-5-en-3β-ol inZea mays shoots were determined using [2-14C]mevalonic acid and [methyl-14C]methionine as substrates. The 24-ethylsterol had a higher specific activity and it apparently was synthesized at about 3–4 times the rate of the 24-methylsterol.1H NMR spectroscopy showed that the 24-ethylsterol was predominantly the 24α-epimer but the 24-methylsterol was a mixture of the 24α-epimer (30–40%) and the 24β-epimer (60–70%). The results are discussed in relation to the involvement of Δ24(28)-, Δ23, Δ25- and Δ24(25)-sterol intermediates in 24-methyl- and 24-ethylsterol production.  相似文献   

3.
Sterol compositions of seeds and mature plants of family cucurbitaceae   总被引:1,自引:0,他引:1  
The sterol fractions of the unsaponifiable lipids obtained from 32 seed and mature plant (leaves and stems, pericarp of the fruit, and roots) materials from the 12 generaApodanthera, Benincasa, Citrullus, Coccinea, Cucumis, Cucurbita, Gynostemma, Lagenaria, Luffa, Momordica, Sechium andTrichosanthes, of the family Cucurbitaceae were investigated by gas liquid chromatography (GLC) on an OV-17 glass capillary column. Among the 23 sterols with Δ5-, Δ7- and Δ8-skeletons identified by GLC, the Δ7-sterols were found to be the major sterols of most of the Cucurbitaceae investigated. The seed materials contained 24-ethyl-Δ7-sterols possessing Δ25-bonds, i.e. 24-ethylcholesta-7,25-dienol and 24-ethylcholesta-7,22,25-trienol, whereas the mature plant materials contained 24-ethyl-Δ7sterols without a Δ25-bond, i.e. 24-ethylcholest-7-enol and 24-ethylcholesta-7,22-dienol, as the most predominant sterols, with a few exceptions. The isolation and identification of 24α-ethylcholesta-8(14),22-dienol from the aerial parts ofCucumis sativus also is described.  相似文献   

4.
The unsaponifiables from threeTheaceae (Camellia japonica L.,Camellia Sasanqua Thunb., andThea sinensis L.) oils and alfalfa, garden balsam, and spinach seed oils and shea fat were separated into four fractions: sterols, 4-methylsterols, triterpene alcohols, and less polar compounds by thin layer chromatography. While the sterol fraction was the major one for the unsaponifiables from alfalfa and spinach seed oils, the triterpene alcohol fraction was predominant for the unsaponifiables from all other oils. The sterol, 4-methylsterol, and triterpene alcohol fractions were analyzed by gas chromatography. All the sterol fractions were alike in their compositions, consisting exclusively of Δ7-sterols, such as α-spinasterol and Δ7-stigmastenol as predominant components together with Δ7-avenasterol and 24-methylcholest-7-enol. Obtusifoliol, gramisterol (occasionally accompanied with cycloeucalenol), and citrostadienol, together with several other unidentified components, were found in the 4-methylsterol fractions from all of the oils except shea fat. The 4-methylsterol fraction from shea fat showed a characteristic composition containing a large proportion of unidentified components which had relative retention time greater than that of citrostadienol, while no citrostadienol was detected. β-Amyrin, lupeol, and butyospermol were major components of the triterpene alcohol fractions from most of the oils, but the fraction from spinach seed oil contained cycloartenol and 24-methylene-cycloartanol as predominant components. There is a close similarity in the compositions of unsaponifiables (sterols, 4-methylsterols, and triterpene alcohols) of the threeTheaceae oils. Two sterols, α-spinasterol and Δ7-stigmastenol, and five triterpene alcohols were isolated from tea seed oil. Moreover, five unidentified components beside parkeol, butyrospermol, α-amyrin, and lupeol were isolated from the triterpene alcohol fraction of shea fat.  相似文献   

5.
Panagrellus redivivus was propagated in media containing three structurally different sterols: 7-dehydrocholesterol, campesterol or stigmastanol. Nematodes propagated with 7-dehydrocholesterol contained mostly lathosterol and 7-dehydrocholesterol. Nematodes propagated with campesterol contained mostly cholesterol and cholestanol. Nematodes propagated with stigmastanol contained mostly cholestanol. The sterol ester fraction was enriched with 4α-methylsterols and contained the same sterols as the free sterol fraction except for nematodes propagated with 7-dehydrocholesterol, where no dietary sterol was found in the ester fraction.P. redivivus is capable of reducing the Δ5-bond, C−24 dealkylation and methylating the sterol nucleus at C−4.  相似文献   

6.
The spongeTethya amamensis, collected from Kagoshima Bay, Japan, contained at least 24 sterols, including Δ5-sterols (82.2% of total sterols) and Δ5, 7-sterols (17.8%). The predominant sterols were cholesterol (29.0%), cholesta-5,22-dienol (13.8%), 24-methylcholesta-5,22-dienol (10.9%), 24-methylenecholesterol (8.3%), 24-methylcholesta-5,7,22-trienol (6.8%), 24-ethylcholest-5-enol (6.1%), and isofucosterol *4.1%). Combined gas liquid chromatography-mass spectrometry suggested the presence of 3 uncommon sterols, (24E)-24-ethylidenecholesta-5,7-dienol, (24E)-24-propylidenecholesta-5,7-dienol, and (24Z)-24-propylidenecholesta-5,7-dienol as minor components. The sterols ofT. amamensis also contained small amounts of 24-norcholesta-5,7,22-trienol and (24Z)-24-ethylidenecholesta-5,7-dienol.  相似文献   

7.
The absolute configuration at C-24 of C-24 epimeric 24-ethyl-5α-cholesta-7,E-22-dien-3β-ols I–IV previously isolated from tea seed oil, shea fat, and gourd and sponge cucumber seed oils, respectively, was studied by proton nuclear magnetic resonance spectroscopy. The results showed that the sterols I and II are identical with spinasterol (24S/α-ethyl group), whereas the sterols III and IV are identified as its 24R/β-epimer, chondrillasterol. This study has thus for the first time properly documented the presence in tracheophytes of a 24β-ethylsterol in which Δ25(27)-bond is reduced.  相似文献   

8.
Zhou W  Nguyen TT  Collins MS  Cushion MT  Nes WD 《Lipids》2002,37(12):1177-1186
The sterol composition of Pneumocystis carinii, an opportunistic pathogen responsible for life-threatening pneumonia in immunocompromised patients, was determined. Our purpose was to identify pathway-specific enzymes to impair using sterol biosynthesis inhibitors. Prior to this study, cholesterol 15 (ca. 80% of total sterols), lanosterol 1, and several phytosterols common to plants (sitosterol 31, 24α-ethyl and campesterol, 24α-methyl 30) were demonstrated in the fungus. In this investigation, we isolated all the previous sterols and many new compounds from P. carinii by culturing the microorganism in steroid-immunosuppressed rats. Thirty-one sterols were identified from the fungus (total sterol=100 fg/cell), and seven sterols were identified from rat chow. Unusual sterols in the fungus not present in the diet included, 24(28)-methylenelanosterol 2; 24(28)E-ethylidene lanosterol 3; 24(28)Z-ethylidene lanosterol 4; 24β-ethyllanosta-25(27)-dienol 5; 24β-ethylcholest-7-enol 6; 24β-ethylcholesterol 7; 24β-ethylcholesta-5,25(27)-dienol 8; 24-methyllanosta-7-enol 9; 24-methyldesmosterol 10; 24(28)-methylenecholest-7-enol 11; 24β-methylcholest-7-enol 12; and 24β-methylcholesterol 13. The structural relationships of the 24-alkyl groups in the sterol side chain were demonstrated chromatographically relative to authentic specimens, by MS and high-resolution 1H NMR. The hypothetical order of these compounds poses multiple phytosterol pathways that diverge from a common intermediate to generate 24β-methyl sterols: route 1, 1→2→11→12→13; route 2, 1→2→9→10→13; or 24β-ethyl sterols: route 3, 1→2→4→6→7; route 4, 1→2→5→8→7. Formation of 3 is considered to form an interrupted sterol pathway. Taken together, operation of distinct sterol methyl transferase (SMT) pathways that generate 24β-alkyl sterols in P. carinii with no counterpart in human biochemistry suggests a close taxonomic affinity with fungi and provides a basis for mechanism-based inactivation of SMI enzyme to treat Pneumocystis pneumonia.  相似文献   

9.
The metabolism of various dietary sterols and the effects of an azasteroid on sitosterol metabolism in the free-living nematodeCaenorhabditis elegans was investigated. The major unesterified sterols ofC. elegans in media supplemented with sitosterol, cholesterol or desmosterol included 7-dehydrocholesterol (66.5%, 40.5%, 31.2%, respectively), cholesterol (6.7%, 52.3%, 26.9%), lathosterol (4.4%, 3.6%, 1.7%) and 4α-methylcholest-8(14)-en-3β-ol (4.2%, 2.1%, 3.8%). Esterified sterols, representing less than 20% of the total sterols, were somewhat similar except for a significantly higher relative content of 4α-methylcholest-8(14)-en-3β-ol (23.3%, 23.4%, 10.6%). ThusC. elegans not only removes the substituent at C24 of dietary sitosterol but possesses the unusual ability to produce significant quantities of 4α-methylsterols. WhenC. elegans was propagated in medium supplemented with sitosterol plus 5 μg/ml of 25-azacoprostane hydrochloride, the azasteroid strongly interfered with reproduction and motility ofC. elegans and strongly inhibited the Δ24-sterol reductase enzyme system; excluding sitosterol, the major free sterols of azacoprostane-treatedC. elegans were cholesta-5, 7, 24-trien-3β-ol (47.9%), desmosterol (9.4%), fucosterol (2.1%) and cholesta-7,24-dien-3β-ol (2.0%). These 4 sterols are likely intermediates in the metabolism of sitosterol inC. elegans.  相似文献   

10.
The major sterols of the seeds ofBenincasa cerifera, Cucumis sativus, Cucurbita maxima, C. pepo andTrichosanthes japonica and of the mature plant tissues (leaves and stems) ofCitrullus battich, Cucumis sativus andGynostemma pentaphyllum of the family Cucurbitaceae were 24-ethyl-Δ7-sterols which were accompanied by small amounts of saturated and Δ5-and Δ8-sterols. The 24-ethyl-Δ7,227,25(27) and Δ7,22,25(27)-sterols constituted the predominant sterols for the seed materials, whereas the 24-ethyl-Δ7 and Δ7,22-sterols were the major ones for the mature plant tissues. The configurations of C-24 of the alkylsterols were examined by high resolution1H NMR and13C NMR spectroscopy. Most of the 24-methyl- and 24-ethylsterols examined which lack a Δ25(27)-bond (i.e., 24-methyl-, 24-methyl-Δ22-, 24-ethyl- and 24-ethyl-Δ22 sterols) were shown to occur as the C-24 epimeric mixtures in which the 24α-epimers predominated in most cases. The 24-ethylsterols which possess a Δ25(27) (i.e., 24-ethyl-Δ25(27)-and 24-ethyl-Δ7,22,25(27)-sterols) were, on the other hand, composed of only 24β-epimers. The Δ8-sterols identified and characterized were four 24-ethyl-sterols: 24α-and 24β-ethyl-5α-cholesta-8,22-dien-3β-ol, 24β-ethyl-5α-cholesta-8,25(27)-dien-3β-ol and 24β-ethyl-5α-cholesta-8,22,25(27)-trien-3β-ol. This seems to be the first case of the detection of Δ8-sterols lacking a 4-methyl group in higher plants, and among the four Δ8-sterols the latter two are considered to be new sterols. The probable biogenetic role of the Δ8-sterols and the possible biosynthetic pathways leading to the 24α- and 24β-alkylsterols in Cucurbitaceae are discussed.  相似文献   

11.
The sterol composition of two taxonomically related freshwater species,Diplodom patagonicus andDiplodom variabilis, respectively, from Lake Nahuel Huapi and the Río de la Plata river were studied by gas liquid chromatography and mass spectrometry. Cholesterol was the main sterol in both species and it was followed by 24-methylcholesta-5, 22-dien-3β-ol, 24-methylcholest-5-en-3β-ol, 24-ethylcholesta-5,22-dien-3β-ol and 24-ethylcholest-5-en-3β-ol. The river species collected within the proximity of marine influence showed less cholesterol and more 24-methylcholesta-5,22-dienol, 24-methylcholest-5-enol and 24-ethylcholesta-5,22-dienol than the lake species.  相似文献   

12.
The sterols and fatty acids ofPsilotum nudum were investigated. The 4,4-dimethyl- and 4α-methylsterol fractions contained 24β-methyl-Δ25-unsaturated sterols,viz., cyclolaudenol and 24β-methyl-25-dehydrolophenol, respectively, as dominant sterols among the other components common in vascular plants. 24-Methylcholesterol (mixture of C-24 epimers) and sitosterol constituted the dominant sterols in the 4-demethylsterol fraction. This is the first identification of 24-methylene-5α-lanost-8-en-3β-ol, 24β-methyl-25-dehydrolophenol, codisterol, isofucosterol, 24-methylene-25-methylcholesterol and avenasterol in a fern. The major fatty acids were 16:0, 18:1, 18:2, 18:3 and 20:3. In addition, several C20 fatty acids with various unsaturation were found to be present in low concentrations.  相似文献   

13.
Effects on the metabolism of campesterol and stigmasterol inCaenorhabditis elegans were investigated using N,N-dimethyldodecanamine, a known inhibitor of growth, reproduction and the Δ24-sterol reductase of this nematode. 7-Dehydrocholesterol was the predominant sterol (51%) ofC. elegans grown in stigmasterol-supplemented media, whereas addition of 25 ppm amine resulted in a large decrease in the relative percentage of 7-dehydrocholesterol (23%) and the accumulation of a substantial proportion (33%) of Δ24-sterols (e.g., cholesta-5,7,24-trienol) and Δ22,24-sterols (e.g., cholesta-5,7,22, 24-tetraenol) but yielded no Δ22-sterols. Dealkylation of stigmasterol byC. elegans proceeded in the presence of the Δ22-bond; reduction of the Δ22-bond occurred prior to Δ24-reduction. Addition of 25 ppm amine to campesterol-supplemented media altered the sterol composition ofC. elegans by increasing the percentage of unmetabolized dietary campesterol from 39 to 60%, decreasing the percentage of 7-dehydrocholesterol from 26 to 12%, and causing the accumulation of several Δ24-sterols (6%).C. elegans also was shown to be capable of dealkylating a Δ24(28)-sterol as it converted 24-methyl-enecholesterol to mostly 7-dehydrocholesterol. The proposed role of 24-methylenecholesterol as an intermediate between campesterol and 7-dehydrocholesterol was supported by the results.  相似文献   

14.
To investigate the metabolism and possible deleterious effects of 4-methyl and 4,4-dimethyl steroids inManduca sexta, the 4,4-dimethyl sterols lanosterol and cycloartenol, the 4-methyl sterol obtusifoliol and the 4,4-dimethyl pentacyclic triterpenoid α-amyrin were fed in an artificial agar-based diet at various concentrations. Utilization and metabolism of these four compounds were compared with sitosterol, stigmasterol, brassicasterol, ergosterol and 24-methylenecholesterol, 24-alkyl sterols that are readily dealkylated and converted to cholesterol inManduca and in most phytophagous insects. None of the 4-methylated compounds significantly inhibited development except at very high dietary concentrations. The Δ24-bonds of lanosterol and cycloartenol were effectively reduced by theManduca Δ24-sterol reductase enzyme, as is the Δ24-bond of desmosterol which, in most phytophagous insects, is an intermediate in the conversion of sitosterol, stigmasterol and other C28 and C29 phytosterols to cholesterol. On the other hand, the 24-methylene substituent of obtusifoliol was not dealkylated. Each of the 4-desmethyl C28 and C29 sterols was readily converted to cholesterol, and a significant amount of 7-dehydro-cholesterol was derived from ergosterol metabolism. The reason for the differences in substrate specificity of these sterols is not clear, but the information may be useful in the development of new, specific, mechanism-based inhibitors of sterol metabolism.  相似文献   

15.
Heliothis zea (corn earworm), an insect that fails to synthesize sterols de novo, was reared on an artificial diet treated with 18 different sterol supplements. Larvea did not develop on a sterol-less medium. Δ5-Sterols with a hydrogen atom, a methylene group, an E-or Z-ethylidene group, or an α- or β-ethyl group (cholesterol, ostreasterol, isofucosterol, fucosterol, sitosterol, and clionasterol, respectively) at position C-24, and Δ5-sterols doubly substituted in the side chain at C-24 with an α-ethyl group and at C-22 with a double bond (stigmasterol) supported normal larval growth to late-sixth instar (prepupal: maturity). The major sterol isolated from each of these sterol treatments was cholesterol, suggesting that H. zea operates a typical 24-dealkylation pathway. The sterol requirement of H. zea could not be met satisfactorily by derivatives of 3β-cholestanol with a 9β, 19-cyclopropyl group, gem dimethyl group at C-4, a Δ5,7-bond or Δ8-bond, or by side-chain modified sterols that possessed a Δ25(27)-24β-ethyl group, Δ23(24)-24-methyl group, or 24-ethyl group, or Δ24(25)-24-methyl or 24-ethyl group. The major sterol recovered from the larvae (albeit developmentally arrested larvae) treated with a nonutilizable sterol was the test compound. Sterol absorption was related to the degree of sterol utilization. The most effective sterols absorbed by the insect ranged from 27 to 66 μg per insect, whereas the least effective sterols absorbed by the insect ranged from 0.6 to 6 μg per insect. Competition experiments using different proportions of cholesterol and 24-dihydrolanosterol (from 9:1 to 1:9 mixtures) indicated that abnormal development of H. zea may be induced on less than a 1 to 1 mixture of utilizable (cholesterol) to nonutilizable (24-dihydrolanosterol) sterols. The results demonstrate new structural requirements for sterol utilization and metabolism by insects, particularly with respect to the position of double bonds in the side chain and functionalization in the nucleus. The novel sterol specificities observed in this study appear to be associated with the dual role of sterols as membrane inserts (nonmetabolic) and as precursors to the ecdysteroids (metabolic).  相似文献   

16.
WhenChlorella emersonii, a green alga, was cultured in the presence of 20 ppm AY-9944, a number of sterols accumulated which appear to be intermediates of sterol biosynthesis in this organism. The sterols isolated include 14α-methyl-ergost-8-en-3β-ol, 14α-methyl 24S-stigmast-8-en-3β-ol, 14α-methyl ergosta-8,24(28)-dien-3β-ol and 4α, 14α-dimethyl 24S-stigmast-8-en-3β-ol. Smaller quantities of several other sterols were found in addition to the normally occurring Δ7, chondrillasterol and Δ7. Control cultures were found to contain, in addition to the normally occurring sterols, smaller quantities of most of the sterols isolated from AY-9944 inhibited cultures. AY-9944 is a specific inhibitor of Δ7 in cholesterol biosynthesis in animals. However, sinceC. emersonii terminates sterol biosynthesis one step prior to the Δ7 step, AY-9944 apparently inhibits sterol biosynthesis prior to this step in this organism. The accumulation of 14α-methyl sterols in treated cultures suggests that AY-9944 is an effective inhibitor of the 14α-methyl removal inC. emersonii. Scientific Article No. A1865, Contribution No. 4775 of the Maryland Agricultural Experiment Station.  相似文献   

17.
The basis of the growth requirement ofParamecium for one of several structurally similar phytosterols is not known. Previous research has indicated that selective esterification of only growth-promoting sterols may be a key. In this study, it was found that under certain conditions sterols that fail to support growth (e.g., cholesterol) can be esterified in large amounts inParamecium. We found no compelling evidence to support the hypothesis that steryl esters serve a specialized role in the fatty acid metabolism of the cell. Octadecenoic acid, essential for cell growth, was the major fatty acid in both steryl esters and triglycerides. It was also shown thatP. tetraurelia can dehydrogenate Δ0 and Δ7, as well as Δ5-3β-hydroxy sterols, to yield the conjugated 5,7-diene derivative. These results indicate the presence of a Δ5, in addition to a Δ7, desaturase of the sterol nucleus in this ciliate. Two C24 α-ethyl sterols, Δ22-stigmasterol (Δ22) and stigmastanol (Δ0), were shown for the first time to promote growth. Finally, we found that non-growth-promoting sterols may compose a high percentage of the free sterols of the surface membrane without adversely affecting cell growth or viability. These data support the conclusion that the growth requirement for select phytosterols inParamecium does not involve the structural or functional role of “bulk” sterols in cell membranes.  相似文献   

18.
Pavlova gyrans, a unicellular alga of interest as food for oysters, was cultured axenically and examined for sterol composition. Desmethyl monohydroxy sterols, which are frequently seen in algae, made up 40% of the total sterols and were observed primarily in the free sterol fraction. The principal sterols of this group were 5-ergostenol, poriferasterol, and clionasterol, as well as some poriferast-22-enol and poriferastanol. Several “methyl” sterols with unusual structures made up 27% of the total sterols. The principal “methyl sterols” were 4α-methyl ergostanol, 4α-methyl poriferastanol, and 4α-methyl poriferast-22-enol. Methyl sterols were found primarily in the ester fraction. Also observed was a new class of dihydroxysterols composing 33% of the total sterols. These sterols are structurally related to the methyl and desmethyl sterols ofPavlova but contain an extra nuclear hydroxyl which can be acetylated when present on a desmethyl sterol, but which is nonreactive with acetic anhydride in 4α-methyl sterols. None of these sterols were observed in ester form but are concentrated in the acid-hydrolyzable, bound fraction. The unique nature of these sterols suggests potential taxonomic utility. Based on a paper presented at the Symposium on Plant and Fungal Sterols: Biosynthesis, Metabolism and Function, held at the AOCS Annual Meeting, Baltimore, MD, April 1990.  相似文献   

19.
Six species of phytoplankton,Pseudoisochrysis paradoxa, Isochrysis galbana, Monochrysis lutheri, Platymonas suecica, Thalassiosira fluviatilis and aChaetoceros species, were cultured in the laboratory and their sterol contents analyzed utilizing digitonin precipitation, thin layer and gas chromatography and gas chromatography-mass spectrometry. A total of 7 sterols were found in phytoplankton. The occurrence of these sterols, cholest-5-en-3β-ol, cholest-5,22-dien-3β-ol, 24-methylcholesta-5,24(28)-dien-3β-ol, 24-methylcholest-5-en-3β-ol, 24-methylcholesta-5,22-dien-3β-ol, 24-ethylcholest-5-en-3β-ol and 24-ethylcholest-5,22-dien-3β-ol, differed significantly among the various phytoplankton species. Cultures ofP. paradoxa biosynthesized both of the sterols found in this species when incubated in the presence of14C- or3H-mevalonic acid for 0.5–9 days. These sterols were cholesterol and 24-methylcholesta-5,22-dien-3β-ol. Since 5 of the sterols found in the phytoplankton commonly occur in mollusks which feed on phytoplankton, it is likely that at least some of the tissue sterols in mollusks are of dietary origin. Research trainee, HL 07295-02, National Heart, Lung and Blood Insitute.  相似文献   

20.
The predominant 4-desmethylsterols from the leaves of 13 species in eight genera of the family Chenopodiaceae are 24α-ethylsterols. In four species,Chenopodium ambrosioides L.,C. rubrum L.,Salicornia europaea L. andS. bigelovii Torr., the C-22(23) double bond is introduced into more than 70% of the 24α-ethylsterols producing spinasterol (24α-ethylcholesta-7,22E-dien-3β-ol) in the first two species and mixtures of spinasterol and stigmasterol (24α-ethylcholesta-5,22E-dien-3β-ol) in the latter species. The saturated side chain analogues predominate with more than 70% of the 24α-ethylsterols in eight species.Salsola kali L.,Suaeda linearis (Ell.) Moq.,Kochia scoparia (L.) Roth., andBassia hirsute (L.) Aschers. synthesize sitosterol (24α-ethylcholest-5-en-3β-ol), andAtriplex arenaria Nutt.,C. album L.,C. urbicum L. andC. leptophyllum Nutt. possess mixtures of sitosterol and 22-dihydrospinasterol (24α-ethylcholest-7-en-3β-ol). Sitostanol (24α-ethyl-5α-cholestan-3β-ol) was isolated fromSuaeda linearis as an 18% component of the total 4-desmethylsterol and in lesser amounts from four other species. In all species synthesizing 24-ethyl-Δ5-sterols, a 24ξ-methylcholest-5-en-3β-ol was also present at 1.0–20% of the total 4-desmethylsterol. Avenasterol [24-ethylcholesta-7,24(28)Z-dien-3β-ol], isofucosterol [24-ethylcholesta-5,24(28)Z-dien-3β-ol), cholesterol (cholest-5-en-3β-ol) and 24ξ-methyl-5α-cholestan-3β-ol also were isolated from several species. Species in the family Chenopodiaceae and the type genusChenopodium may be categorized into one of three groups based on sterol biosynthesis: the Δ7-sterol producers; the Δ5-sterol producers, and those producing mixtures of both Δ7- and Δ5-sterols in relatively fixed percentage compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号