首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
One of the current necessities to produce clean energy is the logical design of inexpensive noble-metal free electrocatalysts with developed structure and composition for electrochemical water splitting. In this study, we introduce a new core-shell-structured bifunctional electrocatalyst of NU-1000/CuCo2S4 for oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and overall water splitting for the first time. Own to unique structure with rich porosity, high electrical conductivity, high stability and larger density of active sites, this nanocomposite can produce water electrolysis in a 1 M KOH solution. The electrochemical measurements show overpotentials of 335 mV for OER and 93 mV for HER at a current density of 10 mAcm−2. Also, the NU-1000/CuCo2S4 nanocomposite exhibits Tafel slope values of 110 mV dec−1 and 103 mV dec−1 for HER and OER, respectively. Besides, NU-1000/CuCo2S4 presents a significant long-term stability in a 72 h run. Additionally, NU-1000/CuCo2S4 requires 1.55 V to deliver 10 mA cm−2 current density in overall water splitting. According to these results, we hope to use this electrocatalyst in producing oxygen and hydrogen from water.  相似文献   

2.
Fabricating effective yet inexpensive catalysts is an important target in the research of water electrolysis and clean energy generation. Key challenges still remaining in this area are the rich density of surface-active sites, efficient interfacial charge transfer and improved reaction kinetics. Herein, Ni2P/CuCo2S4 p-n junctions are constructed via an in situ hydrothermal growth of Ni2P nanoparticles on CuCo2S4 nanosheets. Extensive X-ray photoelectron, optical absorption and electrochemical spectroscopy studies coupled with density functional theory calculations provide a mechanistic understanding of the electrochemical behaviour of these catalysts. The integrated Ni2P/CuCo2S4 p-n junctions, owing to the intimate interfacial interactions, offer interesting possibilities to purposively modulate the electronic structure of active sites at the interface, and thus to improve the hydrogen adsorption energetics and electrochemical reaction kinetics. As a result, the catalyst with 30 wt% Ni2P content displays high intrinsic electrocatalytic activity, requiring overpotentials of 183 and 360 mV to deliver 10 mA cm−2 for HER and 40 mA cm−2 for OER in alkaline media, respectively, far lower than those of individual Ni2P (400 and 520 mV) and CuCo2S4 (348 and 380 mV), further showing remarkable durability for 30 h. In addition, an alkaline two-electrode water electrolyzer assembled by Ni2P/CuCo2S4 nano-heterojunctions exhibits a relatively low cell potential of 1.67 V at 10 mA cm−2. These Ni2P-modified CuCo2S4 heterostructures demonstrate great potential for renewable hydrogen production technologies, including water electrolysis.  相似文献   

3.
The introduction of different ions is an effective method for regulating electron distribution and increasing the electrocatalytic activity of spinel cobalt sulfide (Co3S4). However, the effect of doping different ions on water splitting performance has not been systematically clarified. Therefore, a detailed research is done to illuminate the doping of different ions on the water splitting performance of spinel cobalt sulfide MCo2S4 (M = Ni, Cu and Co) nanorods grown on Ni foam. To drive the electrocatalytic current of 50 mA/cm2 and 10 mA/cm2, the CuCo2S4/NF material only requires an overpotential of 240 mV for oxygen evolution reaction (OER) and an overpotential of 142 mV for hydrogen evolution reaction (HER). The results of density functional theory and experiment demonstrate that the strong water adsorption energy and the large electrochemical activity area make CuCo2S4/NF show good catalytic activity. The CuCo2S4/NF nanorods material presents superior electrochemistry performance with a small voltage 1.53 V. The water oxidation activity increases linearly before nonlinearly improving with the increasing of pH, indicating that the substrate changes from water to hydroxyl. It is noteworthy that CuCo2S4/NF will be transformed into amorphous oxide active species, which will act as a stable catalyst during the reaction.  相似文献   

4.
An effective bi-functional electrocatalyst of Co3O4/Polypyrrole/Carbon (Co3O4/Ppy/C) nanocomposite was prepared through a simple dry chemical method and used to catalyze the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Three types of carbon support as Vulcan carbon, reduced graphite oxide (RGO) and multi-walled carbon nanotubes (MCNTs) were used to study the influence on electrochemical reactions. Spherical shaped Co3O4 nanoparticles with 8–10 nm was found uniformly distributed on Ppy/C composite, which were analyzed by X-ray diffraction and transmission electron microscopy techniques. Amongst, Co3O4/Ppy/MWCNT shows improved bifunctional electrocatalytic activity towards both OER and HER with relatively low over potential (340 mV vs. 490 mV at 10 mA cm−2) and Tafel slope (87 vs. 110 mV dec−1). In addition to that, MWCNT supported Co3O4/Ppy nanocomposite exhibits good electronic conductivity and electrochemical stability up to 2000 potential cycles. The results clearly indicate that the Co3O4/Ppy/MWCNT nanocomposite could be the promising bi-functional electrocatalyst for efficient water electrolysis.  相似文献   

5.
One of the most attractive means for mitigation of environmental pollution is to produce hydrogen by electrocatalytic urea splitting. In the paper, the heterogeneous interfacial rich N–CuCo2S4@Ni3S2 material was in situ synthesized on nickel foam through a typical hydrothermal and sulfuration process. This N–CuCo2S4@Ni3S2 electrode displays excellent urea oxidation performance (potential of 1.38 V@50 mA cm−2), which is one of the best reactivity reported so far. Experimental results show that the superior catalytic activity is attributed to the rapid charge transfer, more reaction center exposed and superior electrical conductivity. Density functional theory shows that this Ni3S2 material accelerates the reaction rate in the catalytic process, the introduction of this N–CuCo2S4 material improves the conductivity of the material, and the synergistic catalysis of the N–CuCo2S4 and Ni3S2 makes this N–CuCo2S4@Ni3S2 material exhibit superior urea oxidation activity. Notably, long-term tests have shown a decrease in catalytic activity, which suggests that the surface of the sulfide is in situ generated to oxides or hydroxides, which are truly active species. This work provides a new idea for the development of efficient and stable urea oxidation catalysts for sulfides.  相似文献   

6.
In this work, CuCo2O4/CuO nanosheets (NSs) and CuCo2O4 oblique prisms (OPs) were synthesized at 130 °C with different amounts of hexamethyltetramine (HMTA) and reaction time through a hydrothermal method, and followed by an annealing treatment of precursors in air. The CuCo2O4/CuO NSs with 40 nm in thickness possessed a large specific surface area of 43.34 m2 g−1 and a mean pore size of 18.14 nm. The electrochemical tests revealed that the CuCo2O4/CuO NSs were belonged to the battery-type electrode material and exhibited a specific capacity of 395.55 C g−1 at the current density of 1 A g−1, higher than 258.16 C g−1 for CuCo2O4 OPs. A hybrid supercapacitor (HSC) was assembled with activated carbon (AC) as negative electrode and CuCo2O4-based materials as positive electrode. The CuCo2O4/CuO NSs//AC HSC exhibited a high energy density of 30.18 Wh kg−1 at a power density of 869.62 W kg−1, and showed a fantastic cycling performance with 105.22% capacity retention over 5000 cycles. In contrast, the CuCo2O4 OPs//AC HSC delivered an energy density 26.27 Wh kg−1 at 916.74 W kg−1. These impressive electrochemical properties indicate that CuCo2O4/CuO NSs may serve as a promising electrode material for the highly capable hybrid supercapacitors in the near future.  相似文献   

7.
The electrocatalytic N2 reduction reaction (NRR) under ambient conditions is a green and sustainable method for ammonia (NH3) synthesis, and the development of efficient electrocatalysts for NRR is a top priority. In recent years, LaFeO3 has been widely used in the field of catalysis because of its high stability, low cost, and green advantages. Through strategies such as heteroatom doping and carbon loading, we can effectively increase the content of oxygen vacancies and improve the electrical conductivity of the material to produce composites with unique electronic structures and excellent catalytic properties. In the present work, we prepared single-atom doped LaFeO3/activated porous carbon composites (LFC/AC) for electrocatalytic NRR. The NH3 yield and Faraday efficiency of LFC/AC were the highest at 23.876 μg h−1 mg−1 and 6.53% in 0.1 M Na2SO4 electrolyte solution, both of which were higher than those of LFC. A series of characterizations and tests have shown that LFC/AC has excellent stability, electrical conductivity, and electrocatalytic properties. The density flooding theory (DFT) simulations were performed to explore the main mechanisms to improve the NRR performance of the materials.  相似文献   

8.
The synthesis of ammonia (NH3) from electrochemical nitrogen reduction reaction (NRR) under environmental conditions is a promising technology. Compared with the traditional artificial nitrogen fixation process by the Haber-Bosch process, electrochemical nitrogen reduction reaction (NRR) requires no harsh reaction conditions. In this work, we report that Bi-doped CeO2 nanocubes show high NRR activity as electrocatalysts. The NH3 yield of 17.83 μgh−1 mg−1cat. and the Faradaic Efficiency (FE) of 1.61% at −0.9 V are achieved in 0.1 M Na2SO4. The performance is much higher than that for the traditional CeO2 nanoparticles. The detailed analysis indicates that both the Bi doping and the cube morphology are critical for this encouraging NRR performance. The mechanism for improving NRR is further explored with first-principle calculations, demonstrating the importance of Bi-doping for performance enhancement.  相似文献   

9.
Developing a multifunctional and sustainable electrode material for hydrogen evolution reaction and supercapacitors is a highly feasible avenue for producing the high energy density and renewable energies. In our study, nanostructured NiCo2S4/Ni3S2/NF nanoarrays are rational developed in experiments via a simple hydrothermal reaction. Ascribed to the 3D nanostructured NiCo2S4/Ni3S2 with numerous exposure active sites and large contact areas for the electrolyte, the binder-free feature of NiCo2S4/Ni3S2/NF facilitates a low charge transfer resistance, as well as the synergetic effect of NiCo2S4 and Ni3S2. The obtained electrocatalyst showed ultrahigh electrocatalytic activity with an overpotential of 111 mV at 10 mA cm−2 and a Tafel slope of 57 mV dec−1. In addition, the electrode showed an area specific capacity of 6.13 F cm−2 at 10 mA cm−2 and superior rate capability (2.72 F cm−2 at 80 mA cm−2), accompanied by excellent cycling stability. This results presented in our work can provide an effective strategy for rational design of other hybrid materials with excellent electrochemical performance in the application of electrocatalysis and supercapacitors.  相似文献   

10.
Recently, constructing core-shell arrays directly on conductive substrates is proved as a promising strategy for energy storage devices, due to the abundant active sites and fast electrons transport paths. In this work, we design core-shelled CuCo2O4@Ni–Co–S arrays directly on Ni foam substrate by the hydrothermal and electrodeposition processes. The core-shelled arrays can possess the large accessible surface area, fast charge transfer kinetics and the synergistic effect from both components, leading to better electrochemical performances. Consequently, core-shell CuCo2O4@Ni–Co–S arrays can deliver a high specific capacitance of 12.10 F cm−2 (corresponding to 2897 F g−1 mass specific capacitance), and good cycle stability with 82.5% capacitance retention after 8000 cycles of charging and discharging at 20 mA cm−2. In addition, a battery-supercapacitor hybrid device made of CuCo2O4@Ni–Co–S and activated carbon displays a high energy density of 0.65 mWh cm−2 at 32 mW cm−2 power density, and the capacitance loss less than 20% (~83.6%) after 8000 cycles.  相似文献   

11.
We present a facile methodology for the synthesis of a novel 2D-MoS2, graphene and CuNi2S4 (MoS2-g-CuNi2S4) nanocomposite that displays highly efficient electrocatalytic activity towards the production of hydrogen. The intrinsic hydrogen evolution reaction (HER) activity of MoS2 nanosheets was significantly enhanced by increasing the affinity of the active edge sites towards H+ adsorption using transition metal (Cu and Ni2) dopants, whilst also increasing the edge sites exposure by anchoring them to a graphene framework. Detailed XPS analysis reveals a higher percentage of surface exposed S at 17.04%, of which 48.83% is metal bonded S (sulfide). The resultant MoS2-g-CuNi2S4 nanocomposites are immobilized upon screen-printed electrodes (SPEs) and exhibit a HER onset potential and Tafel slope value of – 0.05 V (vs. RHE) and 29.3 mV dec−1, respectively. These values are close to that of the polycrystalline Pt electrode (near zero potential (vs. RHE) and 21.0 mV dec−1, respectively) and enhanced over a bare/unmodified SPE (– 0.43 V (vs. RHE) and 149.1 mV dec−1, respectively). Given the efficient, HER activity displayed by the novel MoS2-g-CuNi2S4/SPE electrochemical platform and the comparatively low associated cost of production for this nanocomposite, it has potential to be a cost-effective alternative to Pt within electrolyser technologies.  相似文献   

12.
Electrochemical nitrogen reduction reaction (NRR) is a promising approach for NH3 production to take place of the traditional Haber-Bosch process, which is still limited by the low NH3 yield rate and low Faradaic efficiency. Herein, Ti was post-synthetic exchanged into Zr-based metal organic frameworks to synthesize UiO-Zr-Ti as NRR electrocatalysts. The incorporated Ti is found to function as active sites for NRR and benefit the improved charge-transfer efficiency, which has a positive effect on the high NH3 yield rate. Moreover, the existence of Zr and Ti species can effectively suppress the competing HER, thus leading to high Faradaic efficiency. Therefore, the modified UiO-Zr-Ti-5d shows the highest NH3 yield rate of 1.16 × 10−10 mol cm−2 s−1 and the highest Faradaic efficiency of 80.36%, which is comparable to recently reported NRR electrocatalysts.  相似文献   

13.
As the only carbon-free energy carrier without CO2 emission upon decomposition, ammonia is an ideal storage medium for H2. However, the current low efficiency of ammonia synthesis is a main challenge on intermediate-temperature proton-conducting electrochemical cells. Herein, we develop a novel non-precious cathode catalyst consisting of Fe nanoparticles loaded on two-dimensional MXene nanosheets (Fe@MXene) that can achieve a high Faradaic efficiency of 8.4% and an NH3 yield of 8.24 × 10−9 mol. s−1·cm−2 on an anode-supported Ba0·95Ce0·6Tb0·1Y0·2Zr0·1O3-δ-based electrolyte. The resultant catalyst with high specific surface area and catalytic active sites is beneficial to N2 reduction, resulting from the effective activation of N2 molecules imposed by the transported protons. The mechanism of catalytic NRR reveals that Fe@MXene catalyst can increase the electrocatalytic efficiency because of the improvement in the reaction rate constant. These show a promising catalyst of Fe@MXene for N2 reduction reaction using intermediate-temperature proton-conducting solid oxide cell.  相似文献   

14.
Herein we report a heterostructure with ultrathin nanosheets of Co-doped molybdenum sulfide on CdS nanorod array (donated as CdS@CoMo2S4/MoS2) by hydrothermal synthesis. Firstly, elemental Co doping MoS2 (CoMo2S4) delivers the double benefits of increased active sites and enhanced conductivity. Secondly, the structural characteristics maximally exposes the MoS2 edges and enlarges interfacial contact area between the composite catalyst and electrolyte, as well as the efficient interfacial charge transfer. The ratio of CoMo2S4/MoS2 in CdS@CoMo2S4/MoS2 plays a crucial role for the enhanced photo-assistant electrocatalytic hydrogen evolution reaction (HER). We can tune the ratio of CoMo2S4/MoS2 by controlling the preparation time or the ratio of precursor of Co/Mo. The catalyst with predominant MoS2 phase shows superior photocatalytic HER performance with a high H2 production rate of 46.60 μmol mg−1 h−1. Meanwhile, the catalyst with predominant CoMo2S4 phase exhibits not only relatively low overpotential of 172 mV at 10 mA cm−2, which outperforms most values that have been reported on catalyst supported on ITO substrate, but also possesses H2 production rate of 23.47 μmol mg−1 h−1. The superior photo-assistant electrocatalytic HER activity results from the synergistically structural and electronic modulations, as well as the proper energy band alignment between MoS2 and CdS. This investigation could provide an approach to integrate the electro- and photocatalytic activities for HER, especially the photo responding behaviour at a bias potential which is meaningful to produce H2 for actual application.  相似文献   

15.
The design of high-performance non-noble-metal-based electrocatalysts for electrooxidation reactions involving splitting of water molecule for energy and environmental applications is the need of the hour. In this study, we report the electrocatalytic performance of a nanocomposite catalyst of FeNi2S4 nanoparticles/CoFe nanowires supported on nickel foam that was prepared by a simple hydrothermal method. The electrocatalyst has several advantages, such as the nanocomposite structure, relatively high electrical conductivity, and synergistic effect between FeNi2S4 and CoFe. These characteristics enhanced the catalytic efficiency of FeNi2S4/CoFe electrode, gaining small overpotentials of 380 and 207 mV for oxygen and hydrogen evolution reactions, respectively, at a current density of 100 mA cm?2. The charge transfer processes are significantly improved by the electron pairs from FeNi2S4 and CoFe, as well as by the enhanced active sites at the electrode-electrolyte interface and their bonding interactions. The electrooxidation of urea was also explored, which showed a lower overpotential of 230 mV to reach 100 mA cm?2 current density. Interestingly, FeNi2S4/CoFe was successfully employed as cathode and anode for urea-assisted water electrolysis, utilizing 1.56 V to produce 10 mA cm?2 current density, which is approximately 160 mV below that for water electrolysis, thus verifying the lower energy consumption during electrolysis. These results indicate that nanoparticle and nanowire composite catalysts can be used for wastewater treatment and green energy production applications.  相似文献   

16.
It is very important to exploit robust electrocatalysts for the urea splitting in an alkaline medium. Hence, the NiCo2S4@NiCoP nanoarrays on Ni foam (NiCo2S4@NiCoP/NF) was successfully synthesized for the first time and used as an efficient and stable difunctional electrocatalyst for the overall urea splitting. As one of the most promising bifunctional electrocatalysts reported, NiCo2S4@NiCoP only needs 108 mV to reach current density of 10 mA cm−2 for hydrogen evolution reaction. Moreover, such NiCo2S4@NiCoP//NiCo2S4@NiCoP electrodes couple display superior urea splitting performance with the requirement of a cell voltage of 1.53 V to drive a catalytic current density of 10 mA cm−2. In addition, the NiCo2S4@NiCoP material presents high long-term electrocatalytic stability keeping its performance at 11 mA cm−2 for 12 h. The experimental results demonstrate that the sluggish Volmer step has been improved by incorporating the NiCoP to the NiCo2S4.  相似文献   

17.
One-dimensional nanostructured CuCo2O4-Sm0.2Ce0.8O1.9 (SDC) nanofibers are prepared by the electrospinning method and one step sintering as a cathode with low polarization resistance for intermediate temperature solid oxide fuel cells (IT-SOFC). The CuCo2O4-SDC nanofibers cathodes form a porous network structure and have large triple-phase boundaries. Correspondingly, the electrochemical performance of the CuCo2O4-SDC nanofibers composite cathodes shows significantly improve, achieving the polarization resistance of 0.061 Ω cm2 and the maximum power densities of 976 mW·cm−2 at 750 °C. Thus, these results suggest that CuCo2O4-SDC nanofiber could be a highly active cathode material for IT-SOFCs.  相似文献   

18.
Ammonia (NH3) offers extensive applications in industrial production; moreover, it is a potential carrier for hydrogen energy and an eco-friendly fuel. Electrocatalytic synthesis of NH3 has drawn increasing research attention, wherein an excellent electrocatalyst plays a vital role. Iron (Fe) oxide nanomaterials with their high activity and cost effectiveness of its raw material Fe, have received significant attention in electrocatalytic N2 reduction reaction (NRR) to synthesize NH3. This study reports a rapid and cost-effective electrochemical method for synthesizing magnetic Fe3O4 nanoparticles, achieving gram-level production under ambient conditions. The synthesized magnetic Fe3O4 nanoparticles as electrocatalyst for NRR, achieved excellent faradaic efficiency of 16.9% and an optimal NH3 yield of 12.09 μg h?1 mg?1cat. at ?0.15 V (versus the reversible hydrogen electrode (RHE)) in 0.1 M Na2SO4. Besides, density functional theory (DFT) calculations indicate that the N≡N bond was fully activated, and the NRR proceeds mainly along the alternating hydrogenation pathway.  相似文献   

19.
In this study, amorphous antimony doped tin oxide (ATO) coatings on Cr coated stainless steel and multiwall carbon nanotube (MWCNT) buckypaper substrates were prepared using a radio frequency (RF) magnetron sputtering process as anode materials in lithium-ion batteries. The MWCNT anode, amorphous SnO2:Sb anode and amorphous SnO2:Sb-MWCNT nanocomposite anode have shown first discharge capacities of 446 mA h g−1, 1064 mA h g−1 and 1462 mA h g−1, respectively. The best cycling performance were observed for amorphous SnO2:Sb-MWCNT nanocomposite anode.  相似文献   

20.
Oxygen evolution reaction (OER) is regarded as a limit-efficiency process in electrochemical water splitting generally, which needs to develop the effective and low-cost non-noble metal electrocatalysts. Oxygen vacancies have been verified to be beneficial to enhance the electrocatalytic performance of catalysts. Herein, we report the facile synthesis of reduced CoFe2O4/graphene (r-CFO/rGO) composite with rich oxygen vacancies by a citric acid assisted sol-gel method, heat treatment process and the sodium borohydride (NaBH4) reduction. The introduction of graphene and freezing dry technique prevents the restacking of GO and the aggregation of CFO nanoparticles (NPs) and increases the electronic conductivity of the catalyst. Fast heating rate and low anneal temperature favors to obtain low crystallinity and lattice defects for CFO. NaBH4 reduction treatment further creates the rich oxygen vacancies and electrocatalytic active sites. The obtained r-CFO/rGO with high specific surface area (108 m2 g−1), low crystallinity and rich oxygen vacancies demonstrates a superior electrocatalytic activity with the smaller Tafel slope (68 mV dec−1), lower overpotential (300 mV) at the current density of 10 mA cm−2, and higher durability compared with the commercial RuO2 catalyst. This green, low-cost method can be extended to fabricate similar composites with rich defects for wide applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号