首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Spent catalysts of selective catalytic reduction (SCR) contain a high content of TiO2 (>70 wt%). The effective recovery of TiO2 from spent SCR catalysts and its reuse in photocatalytic hydrogen production is of great importance for environmental protection. In this study, the recovered TiO2 from the spent SCR catalyst was recovered by the alkali washing method, and the purity of the recovered TiO2 reached 94.7%. g-C3N4 as a co-catalyst and enhanced the separation efficiency of the photogenerated electron-hole pairs of the TiO2 photocatalyst. The composite photocatalyst R–TiO2/g-C3N4 prepared by directly mixing the recovered TiO2 with g-C3N4 significantly improved the photocatalytic activity. The experimental design of the photocatalyst synthesis was optimized using the Design Expert software. The results showed that the recovered TiO2 was 0.334 g when the g-C3N4 was 0.046 g and the ultrasonic time was 163 min. Moreover, the hydrogen production rate reached 443.105 μmol g−1 h−1 within 4 h.  相似文献   

2.
A novel hierarchical TiO2 spheroids embellished with g-C3N4 nanosheets has been successfully developed via thermal condensation process for efficient solar-driven hydrogen evolution and water depollution photocatalyst. The photocatalytic behaviour of the as-prepared nanocomposite is experimented in water splitting and organic pollutant degradation under solar light irradiation. The optimal ratio of TiO2 spheroids with g-C3N4 in the nanocomposite was found to be 1:10 and the resulting composite exhibits excellent photocatalytic hydrogen production of about 286 μmol h?1g?1, which is a factor of 3.4 and 2.3 times higher than that of pure TiO2 and g-C3N4, respectively. The outstanding photocatalytic performance in this composite could be ascribed as an efficient electron-hole pair's separation and interfacial contact between TiO2 spheroids with g-C3N4 nanosheets in the formed TiO2/g-C3N4 nanocomposite. This work provide new insight for constructing an efficient Z-scheme TiO2/g-C3N4 nanocomposites for solar light photocatlyst towards solar energy conversion, solar fuels and other environmental applications.  相似文献   

3.
Design and preparation of direct Z-scheme anatase/rutile TiO2 nanofiber photocatalyst to enhance photocatalytic H2-production activity via water splitting is of great importance from both theoretical and practical viewpoints. Herein, we develop a facile method for preparing anatase and rutile bi-phase TiO2 nanofibers with changing rutile content via a slow and rapid cooling of calcined electrospun TiO2 nanofibers. The phase structure and composition, surface morphology, specific surface area, surface chemical composition and element chemical states of TiO2 nanofibers were analyzed by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), nitrogen adsorption and X-ray photoelectron spectroscopy (XPS). By a rapid cooling of 500 °C-calcined electrospun TiO2 precursor, anatase/rutile bi-phase TiO2 nanofibers with a roughly equal weight ratio of 55 wt.% anatase and 45 wt.% rutile were prepared. The enhanced H2 production performance was observed in the above obtained anatase/rutile composite TiO2 nanofibers. A Z-scheme photocatalytic mechanism is first proposed to explain the enhanced photocatalytic H2-production activity of anatase/rutile bi-phase TiO2 nanofibers, which is different from the traditional heterojunction electron–hole separation mechanism. This report highlights the importance of phase structure and composition on optimizing photocatalytic activity of TiO2-based material.  相似文献   

4.
In this report, a novel g-C3N4/Au/BiVO4 photocatalyst has been prepared successfully by assembling gold nanoparticles on the interface of super-thin porous g-C3N4 and BiVO4, which exhibits outstanding photocatalytic performance toward hydrogen evolution and durable stability in the absence of cocatalyst. FESEM micrograph analysis suggested that the intimate contact between Au, BiVO4, and g-C3N4 in the as-developed photocatalyst allows a smooth migration and separation of photogenerated charge carriers. In addition, the XRD, EDX and XPS analysis further confirmed the successful formation of the as-prepared g-C3N4/Au/BiVO4 photocatalyst. The photocatalytic hydrogen production activity of the developed photocatalyst was evaluated under visible-light irradiation (λ > 420 nm) using methanol as a sacrificial reagent. By optimizing the 5-CN/Au/BiVO4 composite shows the highest H2 evolution rate (2986 μmolg−1h−1), which is 15 times higher than that of g-C3N4 (199 μmolg−1h−1) and 10 time better than bare BiVO4 (297 μmolg−1h−1). The enhancement in photocatalytic activity is attributed to efficient separation of the photoexcited charges due to the anisotropic junction in the g-C3N4/Au/BiVO4 system. The enhancement in photocatalytic activity is attributed to efficient separation of the photoexcited charges due to the anisotropic junction in the g-C3N4/Au/BiVO4 system.  相似文献   

5.
Graphitic carbon nitride (g-C3N4) is one of the promising two-dimensional metal-free photocatalysts for solar water splitting. Regrettably, the fast electron-hole pair recombination of g-C3N4 reduces their photocatalytic water splitting efficiency. In this work, we have synthesized the CuO/g-C3N4 heterojunction via wet impregnation followed by a calcination method for photocatalytic H2 production. The formation of CuO/g-C3N4 heterojunction was confirmed by XRD, UV–vis and PL studies. Notably, the formation of heterojunction not only improved the optical absorption towards visible region and also enhanced the carrier generation and separation as confirmed by PL and photocurrent studies. The photocatalytic H2 production results revealed that CuO/g-C3N4 photocatalyst demonstrated the increased photocatalytic H2 production rate than bare g-C3N4. The maximum H2 production rate was obtained with 4 wt % CuO loaded g-C3N4 photocatalyst. Importantly, the rate of H2 production was further improved by introducing simple redox couple Co2+/Co3+. Addition of Co2+ during photocatalytic H2 production shuttled the photogenerated holes by a reversible conversion of Co2+ to Co3+ with accomplishing water oxidation. The effective shuttling of photogenerated holes decreased the election-hole pair recombination and thereby enhancing the photocatalytic H2 production rate. It is worth to mention that the addition of Co2+ with 4 wt % CuO/g-C3N4 photocatalyst showed ∼7.5 and ∼2.0 folds enhanced photocatalytic H2 production rate than bare g-C3N4/Co2+ and CuO/g-C3N4 photocatalysts. Thus, we strongly believe that the present simple redox couple mediated charge carrier separation without using noble metals may provide a new idea to reduce the recombination rate.  相似文献   

6.
In this paper, Ag-based g-C3N4 composites have been successfully fabricated through two deferent synthetic methods: (i) a facile and efficient precipitation-calcination strategy (denoted as D–CN–xAg, x represents the dosage of Ag2CO3, the same below), (ii) a calcination method (denoted as Z–CN–xAg). All Ag-based g-C3N4 composites exhibit the enhanced photocatalytic activities under visible-light irradiation. Moreover, the optimal dosage of Ag2CO3 in the D–CN–xAg composite is found to be 5%, the corresponding hydrogen production capacity is 153.33 μmol g−1 h−1, which is 4.6 times higher than that of Z–CN–5%Ag composite. This might be attributed to appropriate content of metallic Ag and more active sites exposed on the surface of D–CN–5%Ag composite. Meanwhile, combining with photoelectrochemical results, it could be inferred that LSPR effect and the intimate interfacial between metallic Ag and g-C3N4 in the system play also important role for the improvement of photocatalytic activity. These results demonstrate that the appropriate loading of metallic Ag originated from Ag2CO3 into g-C3N4 could accelerate the separation and transfer of photogenerated electron-hole pairs, leading to the improvement of photocatalytic activity for hydrogen production from water splitting. Finally, a possible photocatalytic mechanism is proposed.  相似文献   

7.
Excellent light harvest, efficient charge separation and sufficiently exposed surface active sites are crucial for a given photocatalyst to obtain excellent photocatalytic performances. The construction of two-dimensional/two-dimensional (2D/2D) or zero-dimensional/2D (0D/2D) binary heterojunctions is one of the effective ways to address these crucial issues. Herein, a ternary CdSe/WS2/g-C3N4 composite photocatalyst through decorating WS2/g-C3N4 2D/2D nanosheets (NSs) with CdSe quantum dots (QDs) was developed to further increase the light harvest and accelerate the separation and migration of photogenerated electron-hole pairs and thus enhance the solar to hydrogen conversion efficiency. As expected, a remarkably enhanced photocatalytic hydrogen evolution rate of 1.29 mmol g−1 h−1 was obtained for such a specially designed CdSe/WS2/g-C3N4 composite photocatalyst, which was about 3.0, 1.7 and 1.3 times greater than those of the pristine g-C3N4 NSs (0.43 mmol g−1 h−1), WS2/g-C3N4 2D/2D NSs (0.74 mmol g−1 h−1) and CdSe/g-C3N4 0D/2D composites (0.96 mmol g−1 h−1), respectively. The superior photocatalytic performance of the prepared ternary CdSe/WS2/g-C3N4 composite could be mainly attributed to the effective charge separation and migration as well as the suppressed photogenerated charge recombination induced by the constructed type-II/type-II heterojunction at the interfaces between g-C3N4 NSs, CdSe QDs and WS2 NSs. Thus, the developed 0D/2D/2D ternary type-II/type-II heterojunction in this work opens up a new insight in designing novel heterogeneous photocatalysts for highly efficient photocatalytic hydrogen evolution.  相似文献   

8.
The significance of Sn dopant on the photocatalytic performance of Iron/Titanium nanocomposite towards photocatalytic hydrogen generation by water splitting reaction is investigated. Iron/Titanium nanocomposite modified by Sn4+ dopant acts as a suitable photocatalyst for induced visible light absorption facilitating pronounced charge separation efficiency. Various characterization techniques reveal the heterojunction formation of hematite Fe2O3 with anatase - rutile mixed phase of TiO2 employing Sn doping, where Sn4+ dopant accomplishes the phase transformation of anatase to rutile, entering into the TiO2 lattice. This extended the lifetime of photogenerated charge carriers and enhanced the quantum efficiency of the photocatalyst. The band gap of the nanocomposite is tuned to ~2.4 eV, favoring visible light absorption. A hydrogen generation activity of 1102.8 μmol, approximately five times higher than the lone system (216.5 μmol) is achieved for the 5% Sn doped system for an average of 5 h. Heterojunctions of hematite with anatase-rutile mixed phase, generated as a consequence of tin doping facilitated the enhanced hydrogen generation activity of photocatalyst.  相似文献   

9.
Reduced graphene oxide (rGO) supported g-C3N4-TiO2 ternary hybrid layered photocatalyst was prepared via ultrasound assisted simple wet impregnation method with different mass ratios of g-C3N4 to TiO2. The synthesized composite was investigated by various characterization techniques, such as XRD, FTIR, Raman Spectra, FE-SEM, HR-TEM, UV vis DRS Spectra, XPS Spectra and PL Spectra. The optical band gap of g-C3N4-TiO2/rGO nanocomposite was found to be red shifted to 2.56 eV from 2.70 eV for bare g-C3N4. It was found that g-C3N4 and TiO2 in a mass ratio of 70:30 in the g-C3N4-TiO2/rGO nanocomposite, exhibits the highest hydrogen production activity of 23,143 μmol g?1h?1 through photocatalytic water splitting. The observed hydrogen production rate from glycerol-water mixture using g-C3N4-TiO2/rGO was found to be 78 and 2.5 times higher than g-C3N4 (296 μmol g?1 h?1) and TiO2 (11,954 μmol g?1 h?1), respectively. A direct contact between TiO2 and rGO in the g-C3N4-TiO2/rGO nanocomposite produces an additional 10,500 μmol g?1h?1 of hydrogen in 4 h of photocatalytic reaction than the direct contact between g-C3N4 and rGO. The enhanced photocatalytic hydrogen production activity of the resultant nanocomposite can be ascribed to the increased visible light absorption and an effective separation of photogenerated electron-hole pairs at the interface of g-C3N4-TiO2/rGO nanocomposite. The effective separation and transportation of photogenerated charge carriers in the presence of rGO sheet was further confirmed by a significant quenching of photoluminescence intensity of the g-C3N4-TiO2/rGO nanocomposite. The photocatalytic hydrogen production rate reported in this work is significantly higher than the previously reported work on g-C3N4 and TiO2 based photocatalysts.  相似文献   

10.
For the first time, g-C3N4@α-Fe2O3/Co-Pi heterojunctional hollow spheres were successfully fabricated via thermal condensation method followed by solvothermal and photo-deposition treatment, which showed excellent photocatalytical property. Except for the Z-scheme charge transfer between α-Fe2O3 and g-C3N4, the Co-Pi could further reduce the combination of photogenerated electrons and holes as a hole storage agent, resulting in remarkably enhanced visible-light photocatalytic water splitting activity with the H2 production rate of 450 μmol h−1g−1, which is 15.7 times higher than that of g-C3N4. Moreover, the photocatalytic activity of the prepared ternary hollow photocatalysts showed almost no significant weakness after five cycles, which indicated their good performance stability. The as-prepared g-C3N4@α-Fe2O3/Co-Pi also possessed good activity for overall water splitting with the hydrogen production rate reaching 9.8 μmol h−1g−1. This synthesized g-C3N4@α-Fe2O3/Co-Pi composite is expected to be a promising candidate for water splitting.  相似文献   

11.
The photocatalytic water splitting for generation of clean hydrogen energy has received increasingly attention in the field of photocatalysis. In this study, the Ta2O5/g-C3N4 heterojunctions were successfully fabricated via a simple one-step heating strategy. The photocatalytic activity of as-prepared photocatalysts were evaluated by water splitting for hydrogen evolution under visible-light irradiation (λ > 420 nm). Compared to the pristine g-C3N4, the obtained heterojunctions exhibited remarkably improved hydrogen production performance. It was found that the 7.5%TO/CN heterojunction presented the best photocatalytic hydrogen evolution efficiency, which was about 4.2 times higher than that of pure g-C3N4. Moreover, the 7.5%TO/CN sample also displayed excellent photochemical stability even after 20 h photocatalytic test. By further experimental study, the enhanced photocatalytic activity is mainly attributed to the significantly improve the interfacial charge separation in the heterojunction between g-C3N4 and Ta2O5. This work provides a facile approach to design g-C3N4-based photocatalyst and develops an efficient visible-light-driven heterojunction for application in solar energy conversion.  相似文献   

12.
Engineering surface-active facets of metal cocatalysts is one of the most widely explored strategies to develop advanced photocatalysts and promote photocatalytic solar energy conversion. Here, the surface-active facets of Pd nanocrystals in Pd/g-C3N4 photocatalyst was related to the injection flow rate of PdCl2. When PdCl2 was injected at a low flow rate of 7.5 mL/h (7.5-Pd/g-C3N4), the Pd nanocrystals were uniformly dispersed onto the g-C3N4 with exposed low-index {100} and {111} surface-active facets. However, increasing the injection flow rate to 150 mL/h (150-Pd/g-C3N4) formed Pd nanocrystals where only the {100} surface-active facet was exposed. Under visible light irradiation, the 7.5-Pd/g-C3N4 nanocomposite exhibited excellent water splitting activity for hydrogen production (7.61 mmol g−1 h−1), which was significantly better than with the 150-Pd/g-C3N4 nanocomposite (3.3 mmol g−1 h−1). Theoretical calculations and experimental results confirm the importance of the {111} surface-active facets in the 7.5-Pd/g-C3N4 nanocomposite for promoting photocatalytic activity.  相似文献   

13.
Fabricating 0D/2D heterojunctions is considered to be an efficient mean to improve the photocatalytic activity of g-C3N4, whereas their applications are usually restricted by complex preparation process. Here, the 0D/2D SnO2/g-C3N4 heterojunction photocatalyst is prepared by a simple one-step polymerization strategy, in which SnO2 nanodots in-situ grow on the surface of g-C3N4 nanosheets. It shows the outstanding photocatalytic H2 production activity relative to g-C3N4 under the visible light, which is due to the formation of 0D/2D heterojunction significantly contributing to the separation of photogenerated charge carriers. In particular, the H2 production rate over the optimal SnO2/g–C3N4–1 sample is 1389.2 μmol h−1 g−1, which is 6.06 times higher than that of g-C3N4 (230.8 μmol h−1 g−1). Meanwhile, the AQE value of H2 production over the SnO2/g–C3N4–1 sample reaches up to a maximum of 4.5% at 420 nm. This work develops a simple approach to design and fabricate g–C3N4–based 0D/2D heterojunctions for the high-efficiency H2 production from water splitting.  相似文献   

14.
Urea splitting to produce H2 is as an energy-saving alternative to water electrolysis. However, efficient catalysts are required for the practical implementation of urea splitting because of the high overpotentials of the urea oxidation reaction and the hydrogen evolution reaction. Herein, a Ni-modified direct Z-scheme photocatalyst for the urea oxidation and hydrogen evolution reactions was synthesized by electroplating a WO3/g-C3N4 nanocomposite on Ni-decorated carbon felt (WO/CN–Ni@CF). The 2D/2D nanostructure of the as-synthesized WO3/g-C3N4 composite was confirmed by SEM and TEM. The WO/CN–Ni@CF catalyst electrode exhibited excellent bifunctional photocatalytic activity for the urea oxidation and hydrogen evolution reactions. Consequently, the potential required to generate 100 mA cm?2 in an illuminated photoelectrochemical cell using WO/CN–Ni@CF as the anode and the cathode was reduced from 1.80 to 1.50 V. The photoelectrochemical cell exhibited good stability for 18 h with stable H2 generation.  相似文献   

15.
Transition metal phosphides are considered as the most prospective replacements for noble metal cocatalysts used for H2 evolution during photocatalytic water splitting. In this work, Ni2P/g-C3N4 composite photocatalyst was synthesized using a simple in-situ hydrothermal method by one step. Benefiting from the excellent light trapping, efficient transfer of charge carriers and strong stability of Ni2P nanoparticles, as well as the stable interface contact between Ni2P and g-C3N4, the Ni2P/g-C3N4 exhibit greatly enhanced H2 evolution performance during photocatalytic water splitting. The optimized H2 evolution rate can reach 3344 μmol h?1 g?1 over 17.5 wt% Ni2P/g-C3N4, which is 68.2 times greater than that of pure g-C3N4 and even much greater than that of 15 wt% Pt/g-C3N4. The apparent quantum efficiency (QE) is about 9.1% under 420 nm monochromatic. The enhancement mechanism was demonstrated in detail by transient photocurrent responses, photoluminescence spectra and electrochemical impedance spectroscopy. This work develops a facile strategy to fabricate transition metal phosphide/semiconductor heterojunction systems with potential application for photocatalytic H2 evolution.  相似文献   

16.
A facile, one-pot, solvothermal synthesis of MoS2 microflowers (S1) and the heterostructures MoS2/g-C3N4 with varying ratios of 1:1 (S2), 1:2 (S3) and 1:3 (S4) exhibiting enhanced visible-light-assisted H2 generation by water splitting has been reported. The compounds were thoroughly characterized by PXRD, FESEM, HRTEM, EDS, UV–vis and XPS techniques. FESEM and HRTEM analyses showed the presence of microflowers composed of nano-sized petals in case of pure MoS2 (S1), while the MoS2 microflowers covered with g-C3N4 nanosheets in case of MoS2/g-C3N4 heterostructure, S4. XPS analysis of S2 showed the presence of 2H phase of MoS2 with g-C3N4. The Eosin-Y/dye-sensitized visible-light-assisted photocatalytic investigation of the samples in the absence of any noble metal co-catalyst revealed very good water splitting activity of MoS2/g-C3N4 heterostructure, S2 with hydrogen generation rate of 1787 μmol h−1g−1 which is about 6 and 40 times higher than pure MoS2 and g-C3N4 respectively. The relatively higher catalytic activity of the heterostructure, S2 has been ascribed to the efficient spatial separation of photo-induced charge carriers owing to the synergistic interaction between MoS2 and g-C3N4. A possible mechanism for the Eosin-Y-sensitized photocatalytic H2 generation activity of MoS2/g-C3N4 heterostructures has also been presented. The enhanced activity of S2 was further supported by fluorescence measurements. Thus, the present study highlights the importance of non-noble metal based MoS2/g-C3N4 heterojunction photocatalysts for efficient visible-light-driven H2 production from water splitting.  相似文献   

17.
The effect of Rh co-catalyst nanoparticle size for photocatalytic water splitting using graphitic carbon nitride (g-C3N4) as light absorber was investigated. Rh nanoparticles with sizes in the 4–9 nm range were synthesized and deposited on g-C3N4. The light-absorption properties of the g-C3N4 and the particle size of Rh supported on g-C3N4 were also not influenced by the catalyst synthesis procedures. Rh/C3N4 is active in the photocatalytic splitting of water using visible light. The activity for H2 generation does not depend on Rh particle size. The results obtained point to two important design criteria for a successful photocatalyst: firstly, the surface of the semiconductor should support a sufficient number of Rh nanoparticles to remove the photogenerated electrons before their recombination with holes; secondly, the nanoparticles should be metallic in nature to catalyze the proton-electron transfer reaction to generate adsorbed H atoms. Surface oxidation of the Rh nanoparticles substantially lowers their photocatalytic activity.  相似文献   

18.
To create hybrid composites for highly effective photocatalytic hydrogen evolution reactions, the photogenerated charge separation efficiency at the hybrid interface and the surface reaction kinetics at the reactive sites are key factors. In this work, CoFe hydroxide nanosheets prepared by dealloying were first mixed with graphitic carbon nitride (g-C3N4) to synthesize a CoFe2O4/g-C3N4 composite with strong Co-N bonds at the interface by a simple hydrothermal method. It was found that the presence of Co-N bonds between the components in the composites enhances the separation and transfer by photogenerated carriers at the composite interface. Furthermore, the presence of Co-N bonds enhanced the synergistic effect of the hybrid, which significantly boosts their photocatalytic performance in comparison to their counterparts. Under full-spectrum light, the composite photocatalyst has a greater efficiency of photocatalytic water H2 evolution (6.793 mmol/g−1·h−1) and exceptional stability when compared to pure g-C3N4 (0.236 mmol/g−1·h−1) and CoFe2O4 (0.088 mmol/g−1·h−1). Under visible irradiation, the photocatalytic activity of the composite (0.556 mmol/g−1·h−1) for H2 evolution increased by factors of 28.37 and 75.8 when compared to pure g-C3N4 and CoFe2O4, respectively.  相似文献   

19.
Photocatalytic for water splitting to produce hydrogen is recognized as a low-cost, promising and attractive method to solve environmental problems and energy crises, but finding a high-performance photocatalyst is a big challenge. In this work, we designed a type-II β-AsP/g-C3N4 van der Waals heterostructure as an efficient photocatalyst and had the first principles calculations to analyze its stability, electronic properties, and photocatalytic performance. The results showed that the photocatalyst of β-AsP/g-C3N4 heterostructure met the proper band gap and band edge of the redox potential of water splitting, had effective charge separation of photogenerated electronic holes, and efficient visible light response. Importantly, our research showed that the β-AsP/g-C3N4 heterostructure could proceed spontaneously in thermodynamics and had an excellent photocatalytic performance in further study. It had quite good hydrogen evolution performance with the Gibbs free energy of ?0.02 eV, which is closer to zero than ?0.09 eV of Pt (111). The overpotential of its oxygen evolution reaction is as low as 0.57 V. This work showed excellent development prospects for β-AsP/g-C3N4 heterostructure in the field of photocatalysts, which will promote the development of g–C3N4–based photocatalytic for water splitting.  相似文献   

20.
In this work, a series of Ag/AgX (X = Cl, Br, I)/g-C3N4 (Ag/AgX/CN) composites were successfully fabricated by an in-situ solid phase method. The morphology and structure, photoluminescence and photoelectrochemical properties of composites were investigated in detail. The as-prepared Ag/AgX/CN composites were used as H2 evolution photocatalysts under visible-light irradiation with a sacrificial agent. The experimental results revealed that Ag/AgI/CN-4 composite possesses highest-H2 evolution rate (up to 59.22 μmol g−1 h−1) which are approximately 31 times higher than that of pure g-C3N4 (1.94 μmol g−1 h−1). In addition, Ag/AgCl/CN-4 and Ag/AgBr/CN-4 composites also present high photocatalytic activities yielding, 26.39 and 18.05 μmolH2 g−1 h−1, respectively. The enhanced photocatalytic activities of Ag/AgI/CN-4 composite might be attributed to the synergistic effect between Ag/AgI nanoparticles and g-C3N4 and the localized surface plasmon resonance effect of metallic Ag. Moreover, Ag/AgI/CN-4 composite showed excellent recyclability and stability after five cycling photocatalytic tests (about 25 h). Furthermore, the possible photocatalytic mechanism of Ag/AgI/CN composites is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号