首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Magnesium-based hydrogen storage materials (MgH2) are promising hydrogen carrier due to the high gravimetric hydrogen density; however, the undesirable thermodynamic stability and slow kinetics restrict its utilization. In this work, we assist the de/hydrogenation of MgH2 via in situ formed additives from the conversion of an MgNi2 alloy upon de/hydrogenation. The MgH2–16.7 wt%MgNi2 composite was synthesized by ball milling of Mg powder and MgNi2 alloy followed by a hydrogen combustion synthesis method, where most of the Mg converted to MgH2, and the others reacted with the MgNi2 generating Mg2NiH4, which produced in situ Mg2Ni during dehydrogenation. Results showed that the Mg2Ni and Mg2NiH4 could induce hydrogen absorption and desorption of the MgH2, that it absorbed 2.5 wt% H2 at 473 K, much higher than that of pure Mg, and the dehydrogenation capacity increased by 2.6 wt% at 573 K. Besides, the initial dehydrogenation temperature of the composite under the promotion of Mg2NiH4 decreased greatly by 100 K, whereas it is 623 K for MgH2. Furthermore, benefiting from the catalyst effect of Mg2NiH4 during dehydrogenation, the apparent activation energy of the composite reduced to 73.2 kJ mol−1 H2 from 129.5 kJ mol−1 H2.  相似文献   

2.
Ternary Mg86Y10Ni4 alloy was successfully prepared by vacuum induction melting and subsequent melt-spinning technique. The phase composition and microstructure of the melt-spun and hydrogenated samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy measurements. The melt-spun alloy had an amorphous structure, and it transformed into nanocrystalline during the first hydrogenation process. The hydrogenated sample was composed of MgH2, Mg2NiH4, YH2, and a small amount of YH3. The hydrogen absorption/desorption kinetics and thermodynamics were measured by Sievert's apparatus at various temperatures. It was found that the melt-spun Mg86Y10Ni4 alloy could be fully activated after five hydrogenation and dehydrogenation cycles at 380 °C, and it exhibited a reversible gravimetric hydrogen storage capacity of about 5.3 wt%. The enhanced hydrogen sorption kinetics during the first few cycles can be attributed to the increased specific surface caused by the pulverization and cracking of the alloy particles. The activation energy for dehydrogenation reaction was determined to be 67 kJ/mol and 71 kJ/mol by using Arrhenius equation and Kissinger equation respectively. The thermodynamics of the sample was also evaluated by pressure–composition–isotherms, and the results shown that the enthalpy and entropy changes of Mg/MgH2 transformation in the Mg86Y10Ni4 alloy were slightly higher than that of pure Mg/MgH2.  相似文献   

3.
A metal-organic framework based on Ni (II) as metal ion and trimasic acid (TMA) as organic linker was synthesized and introduced into MgH2 to prepare a Mg-(TMA-Ni MOF)-H composite through ball-milling. The microstructures, phase changes and hydrogen storage behaviors of the composite were systematically studied. It can be found that Ni ion in TMA-Ni MOF is attracted by Mg to form nano-sized Mg2Ni/Mg2NiH4 after de/rehydrogenation. The hydriding and dehydriding enthalpies of the Mg-MOF-H composite are evaluated to be −74.3 and 78.7 kJ mol−1 H2, respectively, which means that the thermodynamics of Mg remains unchanged. The absorption kinetics of the Mg-MOF-H composite is improved by showing an activation energy of 51.2 kJ mol−1 H2. The onset desorption temperature of the composite is 167.8 K lower than that of the pure MgH2 at the heating rate of 10 K/min. Such a significant enhancement on the sorption kinetic properties of the composite is attributed to the catalytic effects of the nanoscale Mg2Ni/Mg2NiH4 derived from TMA-Ni MOF by providing gateways for hydrogen diffusion during re/dehydrogenation processes.  相似文献   

4.
MgTM/ZIF-67 nanocomposites were prepared by the deposition-reduction method using ZIF-67, MgCl2, and TMClx (TM = Ni, Cu, Pd, Nb) as raw materials. The dehydrogenation activation energies of MgTM/ZIF-67 (TM = Ni, Cu, Pd, Nb) nanocomposites were calculated to be 115.4 kJ mol−1 H2, 115.7 kJ mol−1 H2, 113.6 kJ mol−1 H2, and 75.8 kJ mol−1 H2, respectively; hence, the MgNb/ZIF-67 nanocomposite manifested the best comprehensive hydrogen storage performance. The hydrogen storage capacity of the MgNb/ZIF-67 nanocomposite was hardly attenuated after the 100th hydrogen absorption-desorption cycle. The dehydrogenated enthalpies of MgH2 and CoMg2H5 in MgNb/ZIF-67 hydride were calculated to be 72.4 kJ mol−1 H2 and 81.0 kJ mol−1 H2, respectively, which were lower than those of additive-free MgH2 and Mg/ZIF-67. The improved hydrogen storage properties of MgNb/ZIF-67 can be ascribed to the CoMg2–Mg(Nb) core-shell structure and the catalytic effects of NbH and niobium oxide nanocrystals.  相似文献   

5.
Microstructural and hydrogen storage properties of three nanocrystalline melt-spun Mg-base alloys (Mg90Cu2.5Ni2.5Y5, Mg85Cu5Ni5Y5 and Mg80Cu5Ni5Y10) have been investigated in view of their application as reversible hydrogen storage materials. The activation procedure and the hydrogen sorption kinetics of these alloys were studied by thermogravimetry at different temperatures in the range from 100 °C to 380 °C. It has been found that these alloys can reach reversible gravimetric hydrogen storage densities of up to 4.8 wt.%-H2. Even at a low temperature of 100 °C, the hydrogenation kinetics of the investigated alloys is rather high in the range of 1.5 wt.%-H2 per hour. In the hydrogenated state, these alloys consist of MgH2, high temperature Mg2NiH4, Mg2NiH0.3, YH2, YH3 as well as MgCu2. The presence of MgCu2 indicates the reaction of Mg2Cu with hydrogen. After repeated hydrogenation/dehydrogenation the preservation of a nanocrystalline grain structure has been confirmed by scanning electron microscopy, energy-filtered and conventional transmission electron microscopy. Additionally, the distribution of hydrogen in the hydrogenated sample was mapped by means of electron energy loss spectroscopy.  相似文献   

6.
Nanosizing is efficient as the dual-tuning of thermodynamics and kinetics for Mg-based hydrogen storage materials. The in-situ synthesis of nanocomposites through hydrogen-induced decomposition from long-period stacking ordered phase is proved effective to achieve active nano-sized catalysts with uniform dispersion. In this study, the Mg93Cu7-xYx (x = 0.67, 1.33, and 2) alloys with equalized Mg–Mg2Cu eutectic and 14H long-period stacking ordered phase of Mg92Cu3.5Y4.5 are prepared. Its solidification path is determined as α-Mg, 14H–Mg2Cu pair and Mg–Mg2Cu eutectic. The increased Y/Cu atomic ratio lowers the first-cycle hydrogenation rate of the alloys due to the increased 14H–Mg2Cu structure and reduced Mg–Mg2Cu eutectic interfaces. After the hydrogen-induced decomposition of the long-period stacking ordered phase, MgCu2 and YH3 nanoparticles are in-situ formed, and the following activation process significantly accelerates. The YH3 nanoparticles partly decompose to YH2 at 300 °C in vacuum and Mg–Mg2Cu-YHx nanocomposites are in-situ formed. The nano-sized YH2 helps catalyze H2 dissociation and the YHx/Mg interfaces stimulate H diffusion and the nucleation of MgH2. Therefore, the Mg93Cu5Y2 composite shows the fastest absorption rates. However, due to the positive effect of YHx/Mg interfaces on H diffusion and the negative effect of YH3 nanophases on the hydride decomposition, the minimum activation energy of 115.43 kJ mol−1 is obtained for the desorption of the Mg93Cu5.67Y1.33 hydride.  相似文献   

7.
Based on the catalytic effects of transition metals and rare earth metals on magnesium hydride, precipitation behavior of nanocrystalline LaH3 and Mg2Ni has been discussed and correlated with the de-/hydrogenation thermodynamic of Mg-rich alloys in this work. The results show that a significant enhancement of de-/hydrogenation properties has been achieved due to in-situ formed Mg–Mg2Ni–LaH3 nanocomposites. It is observed that the Mg2Ni-rich alloy exhibiting superior performance can desorb about 5.7 wt% hydrogen within 2.5 min at 623 K. The formation of LaH3 tends to promote the hydrogenation process and the Mg2Ni is beneficial for improving the dehydrogenation performance. Meanwhile, the phase boundaries between LaH3, Mg2Ni and Mg also play positive roles due to stored extra energy on the interface. Fitting kinetics model shows that rate-limiting steps of the as-prepared alloys have changed and the desorption activation energy significantly decreases due to precipitation of nanocrystalline LaH3 and Mg2Ni. It is worth noting that desorption activation energy of the preferable composite decreases to 94.03 kJ mol−1. Thermodynamic properties are also investigated and analyzed based on plateau pressure and van't Hoff equation. It is revealed that precipitation of nanocrystalline LaH3 and Mg2Ni significantly enhances the hydrogen storage kinetics of Mg-based alloys.  相似文献   

8.
Using a deposition-reduction method, Mg/MOF nanocomposites were prepared as composites of Mg and metal-organic framework materials (MOFs = ZIF-8, ZIF-67 and MOF-74). The addition of MOFs can enhance the hydrogen storage properties of Mg. For example, within 5000 s, 0.6 wt%, 1.2 wt%, 2.7 wt%, 3.7 wt% of hydrogen were released from Mg, Mg/MOF-74, Mg/ZIF-8, Mg/ZIF-67, respectively. Activation energy values of 198.9 kJ mol−1 H2, 161.7 kJ mol−1 H2, 192.1 kJ mol−1 H2 were determined for the Mg/ZIF-8, Mg/ZIF-67, Mg/MOF-74 hydrides, which are 6 kJ mol−1 H2, 43.2 kJ mol−1 H2, and 12.8 kJ mol−1 H2 lower than that of Mg hydride, respectively. Moreover, the cyclic stability characterizing Mg hydride was significantly improved when adding ZIF-67. The hydrogen storage capacity of the Mg/ZIF-67 nanocomposite remained unchanged, even after 100 cycles of hydrogenation/dehydrogenation. This excellent cyclic stability may have resulted from the core-shell structure of the Mg/ZIF-67 nanocomposite.  相似文献   

9.
Mg2NiH4, with fast sorption kinetics, is considered to be a promising hydrogen storage material. However, its hydrogen desorption enthalpy is too high for practical applications. In this paper, first-principles calculations based on density functional theory (DFT) were performed to systematically study the effects of Al doping on dehydrogenation properties of Mg2NiH4, and the underlying dehydrogenation mechanism was investigated. The energetic calculations reveal that partial component substitution of Mg by Al results in a stabilization of the alloy Mg2Ni and a destabilization of the hydride Mg2NiH4, which significantly alters the hydrogen desorption enthalpy ΔHdes for the reaction Mg2NiH4 → Mg2Ni + 2H2. A desirable enthalpy value of ∼0.4 eV/H2 for application can be obtained for a doping level of x ≥ 0.35 in Mg2−xAlxNi alloy. The stability calculations by considering possible decompositions indicate that the Al-doped Mg2Ni and Mg2NiH4 exhibit thermodynamically unstable with respect to phase segregation, which explains well the experimental results that these doped materials are multiphase systems. The dehydrogenation reaction of Al-doped Mg2NiH4 is energetically favorable to perform from a metastable hydrogenated state to a multiphase dehydrogenated state composed of Mg2Ni and Mg3AlNi2 as well as NiAl intermetallics. Further analysis of density of states (DOS) suggests the improving of dehydrogenation properties of Al-doped Mg2NiH4 can be attributed to the weakened Mg-Ni and Ni-H interactions and the decreasing bonding electrons number below Fermi level. The mechanistic understanding gained from this study can be applied to the selection and optimization of dopants for designing better hydrogen storage materials.  相似文献   

10.
Herein, a new type of trimesic acid-Ni based metal organic framework (TMA-Ni MOF) was synthesized and then, its derivative Ni@C was introduced into MgH2 as destabilizer through high energy ball milling to prepare a Mg–Ni@C–H composite. X-ray diffraction analyses indicate the formation of Mg2Ni/Mg2NiH4 as major phases after dehydrogenation/rehydrogenation of the composite, respectively. Two hydrogen absorption plateaus are observed in the Mg–Ni@C–H composite, corresponding to the hydrogenation of Mg and Mg2Ni, with the enthalpy change values of −75.8 and −52.3 kJ mol−1 H2 respectively. Thus, it can be concluded that a destabilization effect is brought by Ni@C on thermodynamic properties of MgH2. In addition, the hydriding/dehydriding kinetics of MgH2 is notably accelerated with the addition of Ni-based MOF derivative. The activation energy values of both hydrogen absorption and desorption are significantly lowered down with the assistance of Ni@C. Moreover, stable hydrogen de/absorption capacity and kinetics are remained during 25 cycles of high-rate re/dehydrogenation, which can be ascribed to the carbon-wrapped structure of the composite, with which the aggregation of the nanosized particles can be evidently avioded.  相似文献   

11.
In this paper, the Mg95-X-Nix-Y5 (x = 5, 10, 15) alloy were prepared by vacuum induction melting. The X-ray diffraction was used to analytical phase composition in different states, and the Scanning Electron Microscope and Transmission Electron Microscope were used to characterize the microstructure and crystalline state. Meanwhile, the kinetic properties of isothermal hydrogen adsorption and desorption at different temperatures also were tested by the Sievert isometric volume method. The results indicate that the hydrogenated Mg–Ni–Y samples is a nanocrystalline structure consists of MgH2, Mg2NiH4, and YH3 phases. And, the in-situ formed YH3 phase not decompose in the process of dehydrogenation and evenly dispersed in the mother alloy, which plays a paly a positive the catalytic role for the reversible cyclic reaction of Mg and Mg2Ni phases. In addition, the Ni elements are effectively to improve the thermodynamic properties of the Mg-based hydrogen storage alloy, the desorption enthalpy of the Ni5, Ni10, and Ni15 samples successively decrease to 84.5, 69.1, and 63.5 kJ/mol H2. The hydrogen absorption and desorption kinetics of the Mg–Ni–Y alloy are improved obviously with the increase of Ni content, especially for Mg80Ni15Y5 alloy, which the optimal hydrogenated temperature is reduced to 200 °C, and the 90% of the maximum hydrogen storage capacity can be absorbed within 1 min, about 5.4 wt % H2. Besides, the dehydrogenated activation energy of the Mg80Ni15Y5 alloy also is reduced to 67.0 kJ/mol, and it can completely release hydrogen at 320 °C within 5 min, which is almost reached the hydrogen desorption capability of Ni5 alloy at 360 °C. This means that Ni element is a very positive element to reduce the hydrogen desorption temperature.  相似文献   

12.
In this work, we produce Mg2NiH4 powder after hydrogenation of Mg2Ni and employ them for hydrogen generation via hydrolysis reaction in different type of solutions. The analysis of Mg2NiH4 powder reveals surface changes after hydrogenation process which induces the occurrence of cracks and alterations of chemical bonds. The extremely intense hydrogen kinetics is observed using acidic solution, with hydrogen generation rate of approx. 600 ml g−1·min−1 in the first reaction minute. The activation energy for the hydrolysis of Mg2NiH4 is calculated to be 29.45 kJ mol−1. An ageing experiment, which includes Mg2NiH4 powder stored for two months, discloses almost identical hydrogen generation volume as as-received Mg2NiH4 powder. Furthermore, the hydrolysis reaction between Mg2NiH4 and acidic solution is applied for electricity production via PEM fuel cell, which shows the maximum voltage generation of 1.28 V for more than 400 s with the external resistance of 200 Ω.  相似文献   

13.
For pushing Mg-based alloys developing to the practical applications, nano-CeO2 powders were added into the mechanical alloyed (MA) Mg90Al10 alloy. The aim of it is to improve the thermodynamics and kinetics through generating new intermetallic compound, reducing the grain size and increasing the solid solubility of Al in Mg. XRD analysis showed that adding nano-CeO2 powder causes the generation of Mg17Al12 phase and grain refinement of the MA Mg90Al10 + x wt% CeO2 (x = 1, 3, 5 and 8) composites. It also increases the solid solubility of Al in Mg, while results in the reduction of Mg lattice volume. The dehydrogenation enthalpy (ΔHde), calculated from Van't Hoff equation, is reduced from 75.43 kJ mol−1 H2 for the MA Mg90Al10 alloy to 74.22, 72.70, 70.28 and 73.71 kJ mol−1 H2 for the MA Mg90Al10 + x wt% CeO2 (x = 1, 3, 5 and 8) composites, respectively. The increased grain boundaries, caused by the grain refinement and formation of the mutilphase structure, are beneficial to reduce the dehydrogenation activation energy (Ede(a)). It is obtained through Johnson-Mehl-Avrami-Kolmogorov model, which is 162.06, 121.86, 103.73, 101.83 and 109.08 kJ mol−1 H2 for the MA Mg90Al10 + x wt% CeO2 (x = 0, 1, 3, 5 and 8) composites, respectively.  相似文献   

14.
Reduced graphene-oxide-supported nickel (Ni@rGO) nanocomposite catalysts were synthesized, and incorporated into magnesium (Mg) hydrogen storage materials with the aim of improving the hydrogen storage properties of these materials. The experimental results revealed that the catalytic effect of the Ni@rGO nanocomposite on Mg was more effective than that of single nickel (Ni) nanoparticles or graphene. When heated at 100 °C, the Mg–Ni and Mg–Ni@rGO composites absorbed 4.70 wt% and 5.48 wt% of H2, respectively, whereas the pure Mg and Mg@rGO composite absorbed almost no hydrogen. The addition of the Ni@rGO composite as a catalyst yielded significant improvement in the hydrogen storage property of the Mg hydrogen storage materials. The apparent activation energy of the pure Mg sample (i.e., 163.9 kJ mol−1) decreased to 139.7 kJ mol−1 and 123.4 kJ mol−1, respectively, when the sample was modified with single rGO or Ni nanoparticles. Under the catalytic action of the Ni@rGO nanocomposites, the value decreased further to 103.5 kJ mol−1. The excellent hydrogen storage properties of the Mg–Ni@rGO composite were attributed to the catalytic effects of the highly surface-active Ni nanoparticles and the unique structure of the composite nanosheets.  相似文献   

15.
YH2/Y2O3 nanocomposite was prepared and introduced to Mg0.97Zn0.03 solid solution alloy forming a nanocomposite of Mg0.97Zn0.03-10 wt%YH2/Y2O3 by mechanical milling. The phase components and microstructure were systematically investigated by XRD, SEM and STEM. Hydrogenation of Mg0.97Zn0.03 solid solution resulted in phase segregation into MgH2 and intermetallic compound MgZn2. The in-situ formed ultra-fine MgZn2 homogeneously dispersed in MgH2 matrix, and returned to Mg(Zn) solid solution through dehydrogenation. This reversible phase transition of Mg(Zn) solid solution benefited to thermodynamic destabilization of MgH2. The co-dopant of YH2 and Y2O3 exhibited synergistic catalytic effects on the hydrogen absorption and desorption of Mg0.97Zn0.03 solid solution alloy. As a result, Mg0.97Zn0.03-10 wt%YH2/Y2O3 nanocomposite showed significantly improved kinetics with obviously lowered hydriding and dehydriding activation energy of 45.8 kJ⋅mol−1⋅H2 and 74.7 kJ⋅mol−1⋅H2, respectively, and the enthalpy of hydrogen desorption was reduced to 72.2 kJ⋅mol−1⋅H2.  相似文献   

16.
An oversaturated solid solution of H in a nanocomposite material formed mainly by nanocrystalline Mg2Ni, some residual nanocrystalline Ni and an Mg rich amorphous phase has been found for the first time. The nanocomposite was produced by mechanical alloying starting from Mg and Ni elemental powders, using a SPEX 8000D mill. The hydriding characterization of the nanocomposite was carried out by solid–gas reaction method in a Sievert's type apparatus. The maximum hydrogen content reached in a period of 21 Ks without prior activation was 2.00 wt.% H under hydrogen pressure of 2 MPa at 363 K. The X-ray diffraction analysis showed the presence of an oversaturated solid solution between nanocrystalline Mg2Ni and H without any sign of Mg2NiH4 hydride formation. The dehydriding behaviour was studied by differential scanning calorimetry and thermogravimetry. The results showed the existence of two desorption peaks, the first one associated with the transformation of the oversaturated solid solution into Mg2NiH4, and the second one with the Mg2NiH4 desorption.  相似文献   

17.
Magnesium hydride is considered as a promising solid-state hydrogen storage material due to its high hydrogen capacity. How to improve hydrogen desorption kinetics of MgH2 is one of key issues for its practical applications. In this study, we synthesize a Mg–Ni–TiS2 composite through a solution-based synthetic strategy. In the as-prepared composite, the co-precipitated Mg and Ni nanoparticles are highly dispersed on TiS2 nanosheets. As a result, the activation energy for hydrogen desorption decreases to 79.4 kJ mol−1. Meanwhile, the capacity retention rate is kept at the level of 98% and only slight kinetic deterioration is caused after fifty hydrogenation-dehydrogenation cycles. Further investigation indicates that the superior hydrogen desorption kinetics is attributed to the synergistically catalytic effect of the in situ formed Mg2NiH4 and TiH2, and the remained TiS2. The excellent cycle stability is related not only to the inhibition effect of the secondary phases on powder agglomeration and crystallite growth of Mg and MgH2 but also to the prevention effect of MgS and TiS2 on redistribution of catalytic Mg2NiH4 and TiH2 nanoparticles during cycling. This work introduces a feasible approach to develop Mg-based hydrogen storage materials.  相似文献   

18.
The electrochemical reaction of lithium ion with Mg2FeH6, Mg2CoH5 and Mg2NiH4 complex hydrides prepared by reactive grinding is studied here. Plateaus at an average potential of 0.25 V, 0.24 V and 0.27 V corresponding to discharge capacities of 6.6, 5.5 and 3.6 Li can be achieved respectively for Mg2FeH6, Mg2CoH5 and Mg2NiH4. From in situ X-ray diffraction (XRD) characterizations of complex hydride based electrodes, dehydrogenation leads to a decrease of the intensities of the diffraction peaks suggesting a strong loss of crystallinity since formation of Mg and M (M = Fe, Co, Ni) peaks is not observed. 57Fe Mössbauer spectroscopy confirms the formation of nanoscale Fe or an amorphous Mg–Fe alloy during the decomposition of Mg2FeH6. Interestingly, lattice parameter variations suggest phase transitions in the Mg2NiH4 system involving the formation of low hydrogen content hydride Mg2NiH, while an increase of lattice parameters of Mg2CoH5 hydride could be attributed to the formation of a Mg2CoH5Lix solid solution compound up to x = 1.  相似文献   

19.
The structures and properties of hydrogen storage alloy Mg2Ni, of aluminum and silver substituted alloys Mg2−xMxNi (M = Al and Ag, x = 0.16667), and of their hydrides Mg2NiH4, Mg2−xMxNiH4 (M = Al and Ag, x = 0.125) have been calculated from first-principles. Results show that the primitive cell sizes of the intermetallic alloys and hydrides were reduced by substitution of Mg with Al or Ag. Also, the interaction of Ni–Ni was weakened by the substitution. A strong covalent interaction between H and Ni atoms forms tetrahedral NiH4 units in Mg2NiH4. The NiH4 unit near the Al/Ag atom became tripod-like NiH3 in Mg2−xMxNiH4 (M = Al, Ag), indicating that the hydrogen storage capacity was decreased by the substitution. The calculated enthalpies of hydrogenation for Mg2Ni, Mg2−xAlxNi and Mg2−xAgxNi are −65.14, −51.56 and −53.63 kJ/mol H2, respectively, implying that the substitution destabilizes the hydrides. Therefore, the substitution is an effective technique for improving the thermodynamic behavior of hydrogenation/dehydrogenation in magnesium-based hydrogen storage materials.  相似文献   

20.
The hydrogenation characteristics and hydrogen storage kinetics of the melt-spun Mg10NiR (R = La, Nd and Sm) alloys have been studied comparatively. It is found that the Mg10NiNd and Mg10NiSm alloys are in amorphous state but the Mg10NiLa alloy is composed of an amorphous phase and minor crystalline La2Mg17 after melt-spinning. The alloys can be hydrogenated into MgH2, Mg2NiH4 and a rare earth metal hydride RHx. The rare earth metal hydride and Mg2NiH4 synergistically provide a catalytic effect on the hydrogen absorption–desorption reactions in the Mg−H2 system. The hydrogen storage kinetics is not influenced by different rare earth metal hydrides but by the particle size of the rare earth metal hydrides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号