首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 234 毫秒
1.
针对三维编织复合材料制件结构状态监控的关键问题,提出了基于三维六向编织工艺将碳纳米管纱线嵌入到整体复合材料制件中,构建三维空间结构的智能复合材料的方法,利用损伤指数实现了对智能复合材料制件内部损伤类型的识别,并分析了4组三维六向编织智能复合材料制件的损伤指数表现特征。结果表明:综合损伤指数优于其他3种损伤指数,综合损伤指数可精确识别制件内部损伤的类型;对于三维编织复合材料制件内部空隙类微小损伤,综合损伤指数监测值小于100;对于制件内部裂纹的损伤,综合损伤指数监测值位于300~500;当综合损伤指数监测值大于600时,可判断为试件存在大裂口损伤;基于损伤指数可计算制件内部损伤大小,精度可达到0.073 mm。  相似文献   

2.
为解决三维编织复合材料嵌入碳纳米管(CNT)纱线传感器优化配置目标多、目标函数不连续问题,实现航天结构制件内部损伤的全面监测,采用非支配邻域免疫算法对多目标优化问题进行了研究。以四步法三维六向编织工艺为依据,分析了CNT纱线传感器的最佳嵌入位置和数量;通过非支配邻近免疫算法实现了CNT纱线传感器优化配置问题的求解,推导出不同尺寸的三维编织复合材料制件嵌入传感器的最优数量和位置。对损伤制件的应力实验及数据分析证明,CNT纱线传感器优化配置结果适用于三维编织复合材料的损伤监测,损伤定位误差小于0.6 mm。该研究为复合材料损伤源定位模型的建立提供参考。  相似文献   

3.
为实现大尺寸三维编织复合材料内部损伤实时监测,针对三维六向编织复合材料的编织特点,将布拉格光栅(FBG)传感器嵌入三维编织复合材料预制件中,提出了大尺寸智能复合材料的制作方法。研究了大尺寸复合材料内部FBG 传感器的拉伸特性,基于主成分分析方法提出了制件结构损伤检测算法,分析了相同损伤的4 个制件的损伤指数表现特征。试验结果表明:FBG 传感器能准确测量复合材料内部损伤变化;损伤指数可描述试件结构损伤程度。损伤指数T2 和综合损伤指数Phi 能迅速诊断制件内部损伤的存在性,对于制件的同一个损伤Phi 指数计算值大于T2 指数值,是其2 倍以上,Phi 指数可用于及时判断制件内部是否产生损伤,Q 指数和I 指数描述损伤的详细参数更加准确。  相似文献   

4.
为将碳纳米管纱线传感器嵌入复合材料中, 利用三维编织技术构建了智能三维编织复合材料。针对三维六向编织复合材料编织结构,构建了编织机携纱器运动数学模型;提出了智能复合材料嵌入碳纳米管纱线的数量、长度的计算方法;分析了碳纳米管纱线在承载下的电阻变化特征。实验证明:通过Bezier 曲线计算的碳纳米管纱线长度值与实际长度的误差小于1%;当拉伸应变超过2%时,嵌入的碳纳米管纱线的应力与应变开始出现非线性;试件的加载- 卸载对碳纳米管纱线的电阻变化具有一定影响,试件承受大负荷卸载后,碳纳米管纱线会产生剩余电阻。  相似文献   

5.
以嵌入三维编织复合材料的碳纳米线作为拉伸传感器构建智能复合材料,利用主成分分析(PCA)以及T²和Q统计方法,对三维编织智能复合材料结构损伤进行研究。采用主成分方法对三维编织智能复合材料制件的损伤信息进行处理,以无损伤试件作为基准值建立PCA 模型,提出了智能复合材料损伤估计步骤。结果表明:用损伤指数(T² 和Q)与基准值的偏差可描述试件结构损伤程度,有损试件的损伤指数远远大于无损试件的基准值,T² 损伤指数值可以很好地反映试件较大的损伤,Q 损伤指数值较详细地反映了试件的损伤细节;本文方法的计算结果与实际损伤具有很好的吻合性。  相似文献   

6.
为研究三维编织复合材料的实时结构健康状态监控,针对三维六向编织复合材料编织结构,采用三维四步六向编织方法将碳纳米线传感器以轴向纱和六向纱形式嵌入复合材料中,提出了一种构建智能三维复合材料的方法,建立了基于碳纳米线的三维编织复合材料试件内部损伤监测系统。基于碳纳米线测量的电阻值矩阵,采用四分矩阵奇异值分解方法分析信号矩阵的主要特征,计算试件内部的损伤准确位置。实验采用5种不同类型损伤试件进行分析,结果表明,该方法计算的试件内部损伤位置与实际损伤一致,测量的损伤位置坐标误差小于1。该研究可为智能三维编织复合材料的健康监测发展提供理论基础。  相似文献   

7.
为实现三维编织复合材料的原位结构健康监测,研制了嵌入碳纳米线的三维五向编织复合材料预制件,建立了基于三维编织复合材料试件的碳纳米线应变传感实验系统,分析了嵌入三维编织复合材料中的碳纳米线应变传感特性。结果表明:在单调拉伸和循环加载卸载过程中,嵌入三维编织复合材料的碳纳米线传感器电阻变化与试件应变的线性相关性较高;在较大载荷循环加载卸载后,碳纳米线传感器产生的残余电阻可用于检测试件的损伤或累积损伤;引入电阻应变相关系数建立了电阻变化净差值与机械应变净差值的应变传感方程,可实现基于碳纳米线传感器的三维编织复合材料原位结构健康监测。  相似文献   

8.
为实现三维编织复合材料实时承载监测,基于碳纳米线嵌入三维编织复合材料预制件的方法,分析了嵌入碳纳米线的三维编织复合材料制件,在不同载荷下三点弯曲的碳纳米线应变传感特性,重点分析了制件拉伸和压缩承载下碳纳米线电阻的变化。实验表明:在三点弯曲过程中,制件加载至断裂应变和碳纳米线电阻变化具有单调一致性, 碳纳米线电阻变化符合一定指数函数关系;在大负荷加载后碳纳米线产生电阻滞后现象;制件卸载后,碳纳米线传感器产生残余电阻。研究证明:碳纳米线传感器在弯曲负载下能够实时感知并监测三维编织复合材料结构健康状况,为三维编织复合材料结构健康监测系统的构建提供了参考。  相似文献   

9.
为实现对三维编织复合材料制件损伤情况进行实时监测,提出了通过三维五向四步法在三维编织复合材料中嵌入碳纳米线传感器的方法,由于碳纳米线传感与碳纤维具有相似性,因此碳纳米线嵌入三维编织复合材料制件的对其承载性能几乎没有影响。通过三点弯曲实验分析了碳纳米线在三维编织复合材料制件遭受外界应力时其电阻变化率与应力应变的相关性。实验结果说明显示其相关性为指数拟合关系,因此,三维编织复合材料的损伤状况可通过嵌入其中的碳纳米线传感器的电阻变化率与制件所承载的应力应变函数映射关系来进行实时监测。  相似文献   

10.
使用碳纳米线作为传感器对三维编织复合材料制件内部缺陷进行无损检测。描述了碳纳米线嵌入三维编织复合材料制件的基本方法,分析了碳纳米线的力学特性。测试结果表明,嵌入的碳纳米线电阻与三维编织复合材料制件的拉伸应变具有很好的线性关系。并采用电阻响应面理论分析了三维编织复合材料制件的内部缺陷,其结果与扫描电镜显示的结果一致,说明碳纳米线应用于三维编织复合材料制件无损检测可行。该方法为三维编织复合材料制件的无损检测提供了一种新技术。  相似文献   

11.
为监测三维四向编织复合材料拉伸过程中的变形与损伤破坏行为,采用声发射(AE)与数字图像相关互补技术,有效获取复合材料表面局部微变形信息和内部损伤源动态演变特征。结果表明:当复合材料拉伸应变值增加到0.45%左右时,纱线交织区域开始出现明显应变集中;随应变水平进一步提高,应变集中分别向纱线横向、纵向扩展,伴随较多AE信号,出现刚度下降;在应变水平接近1.13%时,表面应变场形成以纱线为受载主体的锯齿形应变集中带;基于K-means聚类分析表明,复合材料基体开裂、纤维/基体脱黏和纤维断裂对应的AE幅度分别为40~60、55~100、40~90 dB;随编织厚度增加,复合材料皮芯结构外部区域占比降低,导致材料抗拉强度下降,但AE峰值幅度和频率无明显变化。  相似文献   

12.
为实现三维编织复合材料状态健康连续监测,根据三维编织复合材料的编织工艺,将光纤布拉格光栅(FBG)传感器嵌入到复合材料制件中,分析拉伸承载下的制件内部应变与FBG传感器信号变化的关系.实验结果表明,FBG传感器信号与制件应变具有较好的线性关系,复合材料的表面编织角对FBG的信号具有一定影响,嵌入FBG传感器对复合材料的...  相似文献   

13.
在2种长丝超喂率下,通过调整复合纱的捻系数使棉纤维和涤纶长丝复合以纺制不同类型的转杯纺复合纱。测量了纱线张力并研究了加捻对转杯纺复合纱结构和性能的影响。结果表明,复合纱捻系数在2种长丝超喂率下对复合纱的结构和性能都有显著的影响;涤纶长丝在复合纱中是以螺旋线形式与棉纤维纱条加捻复合,当长丝张力随着复合纱捻系数的增加和长丝超喂率的减小而增加时,长丝趋向于复合纱内层,复合纱的主要性能也会随之发生变化;与常规转杯纺纱线相比,复合纱表面较光洁,结构较紧密,主要性能得到了改善。  相似文献   

14.
In the recent years, the use of textile structures made from high performance fibers is finding increasing importance in composites applications. In textile process, there is direct control over fiber placements and ease of handling of fibers. Besides economical advantages, textile technologies also provide homogenous distribution of matrix and reinforcing fiber. Thus textile performs are considered to be the structural backbone of composite structures. Textile technology is of particular importance in the context of improving certain properties of composites like inter-laminar shear and damage tolerance apart from reducing the cost of manufacturing. Textile industry has the necessary technology to weave high performance multifilament fibers such as glass, aramid and carbon, which have high tensile strength, modulus, and resistance to chemicals and heat into various types of preforms. Depending upon textile preforming method the range of fiber orientation and fiber volume fraction of preform will vary, subsequently affecting matrix infiltration and consolidation. As a route to mass production of textile composites, the production speed, material handling, and material design flexibility are major factors responsible for selection of textile reinforcement production. This opens a new field of technical applications with a new type of semifinished material produced by textile industry. Various types of hybrid yarns for thermoplastic composites and textile preforming methods have been discussed in detail in this issue. Information on manufacturing methods, structural details and properties of different hybrid yarns are presented and critically analyzed. Characterization methods used for these hybrid yarns have been discussed along with the influence of different processing parameters on the properties being characterized. The developments in all areas of textile preforming including weaving, knitting, braiding, stitching and nonwovens techniques are presented and discussed along with the characterization techniques for these preforms. The techniques used for manufacturing composites using hybrid yarns and textile preforms are discussed along with the details on compaction behavior of these structures during consolidation process. The structure of hybrid yarns and the textile preforms have direct influence on the properties of the composite made from them. The reported literature in this aspect is discussed in detail. In the end, the potential application areas and their trends for thermoplastic composites are discussed and analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号