首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
梁磊  赵文  李艺  郭宪刚 《混凝土》2008,(2):9-11,24
通过正交试验设计,研究钢纤维、聚丙烯纤维、粉煤灰对混凝土常温下和受热150℃后抗压强度、抗渗性能的影响.从试验结果的极差分析和方差分析可以得出:增强纤维所掺种类过于复杂不能使纤维高性能混凝土受热后的性能全部得以提高;长钢纤维对受热后混凝土抗渗性能增强作用突出;作为长钢纤维的搭配,短钢纤维比聚丙烯纤维更为适合;粉煤灰对有受热要求的混凝土掺量不可过大.  相似文献   

2.
受热前、后的纤维高性能混凝土弯曲性能的影响因素分析   总被引:1,自引:0,他引:1  
梁磊  李艺  赵文  郭宪刚 《混凝土》2007,(12):10-12,16
通过正交化试验设计,研究常温下、受热150℃后钢纤维、聚丙烯纤维、粉煤灰对混凝土弯曲性能的影响,并进行钢纤维混掺、单掺、不掺的混凝土弯曲性能的对比.从试验结果的方差分析以及对比试验数据可以得出:(1)在混凝土中掺入钢纤维能够明显改善混凝土的弯曲性能,尤其是长度较大的钢纤维;(2)钢纤维的混掺对于混凝土弯曲性能的增强效果仅在受热前优于钢纤维的单掺;(3)高强混凝土的弯曲性能远不如强度等级低于它的钢纤维混凝土.  相似文献   

3.
为研究纤维类型对高性能混凝土力学性能的影响,对分别使用钢纤维与玄武岩纤维配制的不同配比高性能混凝土进行抗压、抗折性能试验,研究纤维类型对混凝土抗压、抗折性能的影响.研究表明,使用钢纤维与玄武岩纤维作为增强纤维均能配制出性能良好的高性能混凝土;钢纤维高性能混凝土的抗压、抗折性能均优于玄武岩纤维高性能混凝土;掺入钢纤维可以有效提高高性能混凝土的抗折强度和抗压强度;掺入玄武岩纤维会降低高性能混凝土的抗折强度和抗压强度.  相似文献   

4.
《Planning》2017,(13)
为了研究高温后高强高性能混凝土的抗爆裂性能,对掺加0、0.2%聚丙烯纤维的C60高强高性能混凝土进行模拟高温试验,测试高温后混凝土的超声参数及轴心抗压强度,建立混凝土超声声速与受火温度及轴心抗压强度的关系;对常温、300、500、700℃分别掺加0、0.2%纤维的高强高性能混凝土进行压汞实验,分析纤维对混凝土内部孔隙影响。结果表明:随受火温度的提高,混凝土高温损伤趋于严重,总孔隙率、平均孔径、宏观孔所占比例均趋于增大。掺加纤维的有利方面主要体现在纤维受热熔化,降低了混凝土内部的蒸汽压力,减轻了劣化程度,高温后掺纤维混凝土比素混凝土超声声速、轴心抗压强度有所提高,平均孔径、宏观孔比例较小,一定程度上改善了混凝土的高温性能。  相似文献   

5.
研究了碳纤维对C80高强高性能混凝土工作性能、力学性能和早期抗裂性能的影响,并对比了不同纤维对混凝土抗压强度的影响。结果表明:碳纤维掺量过大会显著增加高强高性能混凝土的减水剂用量并降低拌合物性能,其最大体积掺量不宜超过0.2%。钢纤维能在一定程度上提高高强高性能混凝土的抗压强度,而碳纤维、玄武岩纤维等短切纤维对混凝土的抗压强度没有显著影响。碳纤维可以有效抑制高强高性能混凝土的塑性开裂,早期抗裂等级最高可以达到Ⅴ级。  相似文献   

6.
为研究高温前后聚丙烯纤维直径对高强混凝土的相对残余抗压强度及相对渗透能力的影响,在C60混凝土中分别掺入直径为25μm和35μm的聚丙烯纤维,进行了抗压性能及抗渗性能试验。试验结果表明,600℃以下,掺聚丙烯纤维的高强混凝土相对残余抗压强度略高于素混凝土;600℃以上,结果相反。同条件下,直径为25μm的聚丙烯纤维的贡献略优于直径为35μm的聚丙烯纤维。快速氯离子迁移系数法说明,与素混凝土相比,掺入聚丙烯纤维使得高强混凝土高温(100~700℃)作用后的抗渗性提高,其中,掺入直径为25μm的聚丙烯纤维高强混凝土的相对渗透能力低于掺入直径为35μm的聚丙烯纤维高强混凝土。  相似文献   

7.
混杂纤维混凝土的力学性能及抗渗性能   总被引:4,自引:1,他引:3  
进行了混杂纤维(钢纤维-改性聚丙烯纤维)混凝土力学性能及抗渗性能的试验研究.结果表明,混杂纤维可以提高混凝土的抗压强度、劈拉强度和抗折强度,但对混凝土抗渗性能影响不大.引气剂有助于提高混杂纤维混凝土的抗渗性.另外,简单分析了纤维混杂方式对混凝土力学性能和抗渗性能影响的机理.  相似文献   

8.
对钢纤维和玄武岩纤维双掺混凝土、钢纤维混凝土和普通混凝土的抗折、抗压强度,抗裂、抗渗性能进行了对比试验研究.试验结果显示:由于钢纤维的加入,增加了混凝土的抗压强度和抗裂、抗渗能力,大大提高了混凝土的抗折强度,玄武岩纤维取代部分钢纤维后,试件的强度降低不大,但改善了混凝土的和易性,也有助于提高抗裂和抗渗能力.  相似文献   

9.
在研究钢纤维高性能混凝土抗压强度的基础上,利用水压力渗透法,研究了钢纤维掺量对高性能混凝土抗渗性能的影响及其变化规律。结果表明,钢纤维的掺入可以提高高性能混凝土抗渗性能,且小掺量钢纤维的掺入对混凝土渗水的抑制作用更为明显。  相似文献   

10.
在研究钢纤维高性能混凝土抗压强度的基础上,利用水压力渗透法,研究了钢纤维掺量对高性能混凝土抗渗性能的影响及其变化规律。结果表明,钢纤维的掺入可以提高高性能混凝土抗渗性能,且小掺量钢纤维的掺入对混凝土渗水的抑制作用更为明显。  相似文献   

11.
钢纤维混凝土抗裂性能的试验研究   总被引:1,自引:0,他引:1  
按照某公路路面接缝设计要求,以设计强度等级C50作为混凝土的设计强度等级,分别对钢纤维混凝土和普通混凝土进行配制.对比了两种混凝土的和易性和力学性能,结果表明:钢纤维掺入后,混凝土拌合物的坍落度有所降低,混凝土的抗压强度有较小幅度的提高,混凝土的抗劈拉强度和抗折强度提高幅度较大,显著改善了混凝土的力学性能.  相似文献   

12.
通过辅特维掺量的改变,研究混杂纤维对轻骨料混凝土抗压强度、抗折强度及抗渗性能的影响。从试验结果可以看出:两种纤维混杂后的对轻骨料混凝土的抗压强度影响不明显,抗折强度提高较多。在适当的掺量条件下,对抗渗性能提高效果显著。  相似文献   

13.
采用纤维混杂技术将2种或2种以上纤维材料优化组合,有利于提高纤维体积率,改善单一纤维复合材料的性能。对体积率为3%、4%和5%的混杂钢纤维混凝土进行了强度试验研究,分析了钢纤维混杂和纤维体积率对材料抗压强度和抗折强度的影响。与基准混凝土相比,混杂钢纤维混凝土的抗压强度提高53.4%~63.4%,抗折强度提高106.6%~147.1%,抗折强度的提高幅度远大于抗压强度的,约为2.3倍;混杂钢纤维体积率从3%、4%到5%每增加1%,抗压强度提高5%-10%,抗折强度提高30%~40%,其抗折强度的提高幅度为抗压强度的4倍。  相似文献   

14.
钢纤维再生混凝土力学性能试验研究   总被引:1,自引:0,他引:1  
以0%、1%、1.5%、2%体积率掺量的钢纤维再生混凝土和相对应的钢纤维普通混凝土进行了抗压、抗折强度试验,探讨钢纤维掺量对再生混凝土力学性能的影响.结果表明,钢纤维再生混凝土抗压、抗折强度略低于相同掺量的钢纤维普通混凝土;与普通再生混凝土相比,钢纤维的加入可以稍提高再生混凝土的抗压强度,且可以在很大程度上提高再生混凝...  相似文献   

15.
聚丙烯纤维高性能混凝土的试验研究   总被引:1,自引:0,他引:1  
在混凝土中掺入聚丙烯纤维,对其和易性、抗压强度、劈裂抗拉强度、抗折强度、抗渗性能等指标进行测试,确定最佳掺量。通过分析机理,说明聚丙烯纤维对混凝土上述指标的影响,并介绍了聚丙烯纤维混凝土在实际工程中的运用。  相似文献   

16.
为了研究钢-无机纤维对轻骨料混凝土力学性能和耐久性能的影响,设计不同掺量的单掺陶瓷纤维和玄武岩纤维以及不同掺杂方式的混杂钢-玄武岩纤维和钢-陶瓷纤维增强轻骨料混凝土试件。结果表明,钢-玄武岩纤维对轻骨料混凝土抗压强度和60d透水时水压强度提高最明显,最大增幅分别达14.5%、42.9%;掺入1.35kg/m3玄武岩纤维对抗折强度增幅为62.2%;掺入陶瓷纤维降低了抗压强度和抗渗性能,但提高了抗折强度及抗冻性能;钢-陶瓷纤维对抗渗性能和抗冻性能提升效果较好。  相似文献   

17.
为提高钢纤维混凝土的压拉性能,将磁化水技术应用到钢纤维混凝土中。对磁化水水流速度与钢纤维体积率进行正交试验,并制作标准试块进行压拉强度试验,研究磁化水对钢纤维混凝土压拉性能的影响。试验结果表明:磁化水能有效提高钢纤维混凝土的压拉强度,当磁场强度为285 mT,水流速度为2.1 m/s,钢纤维体积率为1.8%时,磁化水钢纤维混凝土的压拉强度与素混凝土相比,28天立方体抗压强度提高23.71%,劈裂抗拉强度提高43.63%。对磁化水增强钢纤维混凝土压拉性能机理进行分析可知,磁化水能通过提高混凝土压拉强度和改善钢纤维与混凝土间的界面粘结力,增强钢纤维混凝土的压拉性能。  相似文献   

18.
王晓翠  石立安  吴凯 《工业建筑》2012,42(4):103-106
对一种高性能聚乙烯醇(PVA)纤维在不同掺量下对混凝土和易性、力学性能和抗渗性能的影响展开研究,分析纤维种类及掺量对控制砂浆塑性收缩裂缝的作用机理。结果表明:掺入适量PVA纤维不会对混凝土的和易性产生影响,但当纤维掺量达到6.5 kg/cm3时,会对混凝土的和易性产生负面作用;PVA纤维可以适当提高混凝土抗压强度,显著增加其劈裂抗拉强度,但当掺量超过一定值时,力学性能会有所下降;在水泥基材料中掺入PVA和聚丙烯(PP)纤维,均可有效改善材料的抗裂性能,从而提高其抗渗性能,其中PVA纤维对抗渗性能改善效果更加明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号