首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Kong YK  Lee KS  Kim DM  Jung MC 《Ergonomics》2011,54(11):1072-1080
The objective of this study was to evaluate individual finger force and contribution to a gripping force, the difference between actual and expected finger forces and subjective discomfort rating at 10 different submaximal voluntary contraction (%MVC) levels (10-100% in 10 increments). Seventy-two participants randomly exerted gripping force with a multi-finger force measurement system. The individual finger force, gripping force and discomfort increased as %MVC levels increased. The middle and ring fingers exerted more force and contributed to a gripping force more than the index and little fingers due to their larger mass fractions of the digit flexor muscles. It was apparent at <50% MVC; however, the index finger increased its contribution and exerted even more force than expected at more than 50% MVC. Subjective discomfort supported the results of the objective measures. This could explain the conflicting findings between index and ring fingers in previous finger contribution studies. STATEMENT OF RELEVANCE: Hand tool design is of special interest in ergonomics due to its association with musculoskeletal disorders in the hand. This study reveals a different contribution pattern of the fingers in submaximal voluntary contraction of gripping exertion.  相似文献   

2.
《Ergonomics》2012,55(11):1072-1080
The objective of this study was to evaluate individual finger force and contribution to a gripping force, the difference between actual and expected finger forces and subjective discomfort rating at 10 different submaximal voluntary contraction (%MVC) levels (10–100% in 10 increments). Seventy-two participants randomly exerted gripping force with a multi-finger force measurement system. The individual finger force, gripping force and discomfort increased as %MVC levels increased. The middle and ring fingers exerted more force and contributed to a gripping force more than the index and little fingers due to their larger mass fractions of the digit flexor muscles. It was apparent at <50% MVC; however, the index finger increased its contribution and exerted even more force than expected at more than 50% MVC. Subjective discomfort supported the results of the objective measures. This could explain the conflicting findings between index and ring fingers in previous finger contribution studies.

Statement of Relevance: Hand tool design is of special interest in ergonomics due to its association with musculoskeletal disorders in the hand. This study reveals a different contribution pattern of the fingers in submaximal voluntary contraction of gripping exertion.  相似文献   

3.
The present study evaluated the effect of grip span on finger forces and defined the best grip span for maximising total grip strength based on the finger forces and subjective discomfort in a static exertion. Five grip spans (45, 50, 55, 60 and 65 mm) of the opposing (A-type) handle shape were tested in this study to measure total grip strength and individual finger force among Korean population. A total of 30 males who participated in this study were asked to exert a maximum grip force with two repetitions, and to report the subjective discomfort experienced between exertions using the Borg's CR-10 scale. The highest grip strength was obtained at 45 mm and 50 mm grip spans. Results also showed that forces of all fingers, except for the middle finger force, significantly differed over the grip spans. The lowest subjective discomfort was observed in the 50 mm grip span. The results might be used as development guidelines for ergonomic opposing (A-type) hand tools for Korean population.  相似文献   

4.
Kong YK  Freivalds A  Kim SE 《Ergonomics》2004,47(12):1350-1364
Various hook handles were tested to evaluate the effect of handle design characteristics on subjective discomfort ratings and phalange forces in a maximum gripping task. A force glove system with 12 thin force sensitive resistor (FSR) sensors was used to measure phalange forces on the hook handles. Thirty subjects (15 males and 15 females) were tested, and generally subjects preferred 30 or 37 mm (the latter for large handed males) double frustrum handles followed by 30 mm oval handles, whereas overall they showed less preference for 37 mm oval handles and 45 mm double frustrum handles. The phalange force was more related to handle shape than to handle size in this study, i.e. the individual phalange forces on oval handles were about 8% higher than those on double frustum handles. The force distributions in the maximum gripping task showed significant differences in finger and phalange forces, in the order of middle, index, ring, and little fingers and distal, middle, and proximal phalanges from the highest to the lowest forces. The findings of this study may provide guidelines for designing double frustum handles for satisfying user's preference and oval handles for obtaining high phalange forces in a maximum gripping task.  相似文献   

5.
《Ergonomics》2012,55(6):1212-1230
The contributions and co-ordination of external ringer grip forces were examined during a lifting task with a precision grip using multiple fingers. The subjects ( n = 10) lifted a force transducer-equipped grip apparatus. Grip force from each of the five fingers was continuously measured under different object weight (200 g, 400 g, and 800 g) and surface structure (plastic and sandpaper) conditions. The effect of five-, four-, and three-finger grip modes was also examined. It was found that variation of object weight or surface friction resulted in change of the total grip force magnitude; the largest change in finger force, was that for the index finger, followed by the middle, ring, and little fingers. Percentage contribution of static grip force to the total grip force for the index, middle, ring, and little fingers was 420%, 27·4%, 17·6% and 12·9%, respectively. These values were fairly constant for all object weight conditions, as well as for all surface friction conditions, suggesting that all individual finger force adjustments for light loads less than 800 g are controlled comprehensively simply by using a single common scaling value. A higher surface friction provided faster lifting initiation and required lesser grip force exertion, indicating advantageous effect of a non-slippery surface over a slippery surface. The results indicate that nearly 40% force reduction can be obtained when a non-slippery surface is used. Variation in grip mode changed the total grip force, i.e., the fewer the number of fingers, the greater the total grip force. The percent value of static grip force for the index, middle, and ring fingers in the four-finger grip mode was 42·7%, 32·5%, and 24·7%, respectively, and that for the index and middle fingers in the three-finger grip mode was 43·0% and 56·9%, respectively. Therefore, the grip mode was found to influence the force contributions of the middle and ring fingers, but not of the index finger.  相似文献   

6.
《Ergonomics》2012,55(12):1350-1364
Various hook handles were tested to evaluate the effect of handle design characteristics on subjective discomfort ratings and phalange forces in a maximum gripping task. A force glove system with 12 thin force sensitive resistor (FSR) sensors was used to measure phalange forces on the hook handles. Thirty subjects (15 males and 15 females) were tested, and generally subjects preferred 30 or 37?mm (the latter for large handed males) double frustrum handles followed by 30?mm oval handles, whereas overall they showed less preference for 37?mm oval handles and 45?mm double frustrum handles. The phalange force was more related to handle shape than to handle size in this study, i.e. the individual phalange forces on oval handles were about 8% higher than those on double frustum handles. The force distributions in the maximum gripping task showed significant differences in finger and phalange forces, in the order of middle, index, ring, and little fingers and distal, middle, and proximal phalanges from the highest to the lowest forces. The findings of this study may provide guidelines for designing double frustum handles for satisfying user's preference and oval handles for obtaining high phalange forces in a maximum gripping task.  相似文献   

7.
IEA Newsletter     
《Ergonomics》2012,55(5):601-605
Five grip spans (45 to 65 mm) were tested to evaluate the effects of handle grip span and user's hand size on maximum grip strength, individual finger force and subjective ratings of comfort using a computerised digital dynamometer with independent finger force sensors. Forty-six males participated and were assigned into three hand size groups (small, medium, large) according to their hands' length. In general, results showed the 55- and 50-mm grip spans were rated as the most comfortable sizes and showed the largest grip strength (433.6 N and 430.8 N, respectively), whereas the 65-mm grip span handle was rated as the least comfortable size and the least grip strength. With regard to the interaction effect of grip span and hand size, small and medium-hand participants rated the best preference for the 50- to 55-mm grip spans and the least for the 65-mm grip span, whereas large-hand participants rated the 55- to 60-mm grip spans as the most preferred and the 45-mm grip span as the least preferred. Normalised grip span (NGS) ratios (29% and 27%) are the ratios of user's hand length to handle grip span. The NGS ratios were obtained and applied for suggesting handle grip spans in order to maximise subjective comfort as well as gripping force according to the users' hand sizes. In the analysis of individual finger force, the middle finger force showed the highest contribution (37.5%) to the total finger force, followed by the ring (28.7%), index (20.2%) and little (13.6%) finger. In addition, each finger was observed to have a different optimal grip span for exerting the maximum force, resulting in a bow-contoured shaped handle (the grip span of the handle at the centre is larger than the handle at the end) for two-handle hand tools. Thus, the grip spans for two-handle hand tools may be designed according to the users' hand/finger anthropometrics to maximise subjective ratings and performance based on this study. Results obtained in this study will provide guidelines for hand tool designers and manufacturers for designing grip spans of two-handle tools, which can maximise handle comfort and performance.  相似文献   

8.
《Ergonomics》2012,55(9):1163-1176
Individual finger position and external grip forces were investigated while subjects held cylindrical objects from above using circular precision grips. Healthy females (n = 11) and males (n = 15) lifted cylindrical objects of various weights (05, 10 and 20kg), and varied diameters (50, 7-5 and 100cm) using the 5-finger grip mode. The effects of 4-, 3- and 2-finger grip modes in the circular grip were also investigated.

Individual finger position was nearly constant for all weights and for diameters of 5-0 and 7-5 cm. The mean angular positions for the index, middle, ring and little fingers relative to the thumb were 98°, 145°, 181°, and 236°, respectively. At the 10-cm diameter, the index and middle finger positions increased, while the ring and little finger positions decreased. There were no differences in individual finger position with regard to gender, hand dimension, or hand strength.

Total grip force increased with weight, and at diameters greater or lesser than 7-5 cm. Total grip force also increased as the number of fingers used for grasping decreased. Although the contribution of the individual fingers to the total grip force changed with weight and diameter, the thumb contribution always exceeded 38% followed by the ring and little fingers, which contributed approximately 18-23% for all weights and diameters. The contribution of the index finger was always smallest (>11%). There was no gender difference for any of the grip force variables. The effects of hand dimension and hand strength on the individual finger grip forces were subtle.  相似文献   

9.
The current study determined the maximal voluntary isometric forces for a variety of finger pulling tasks. Twenty healthy females, with no history of upper extremity injuries, were asked to use the fingers from their dominant hands and apply their maximal voluntary pull forces for seven conditions that varied in the number of fingers, force application location and interface characteristics. All conditions were tested with and without the use of a glove. However, there was no significant effect of wearing a glove. As expected, the maximum force increased with the number of fingers used and decreased when forces were applied on the finger tip instead of the first distal inter-phalangeal joint. Maximum forces ranged from 59.5 ± 21.4 N when using the index finger tip on a thin ring, to 268.7 ± 77.2 N when using all four fingers on a straight bar.

Relevance to industry

Many industrial tasks require pulling with the finger(s). The current study provides a set of maximal finger pull force values that can be used to set force limits that will contribute to protecting worker health and safety and insuring manufacturing quality.  相似文献   

10.
Li ZM 《Ergonomics》2002,45(6):425-440
The current study investigated inter-digit co-ordination and object-digit interaction during sustained object holding tasks by using five, six-component force/torque sensors. The sum of the individual finger normal forces and the thumb normal force showed a parallel variation with a mean median correlation coefficient of 0.941. The normal force traces demonstrated the lowest coefficient of variation (about 9% as averaged across digits) as compared with other force/torque traces. The sum for the variances of the normal forces of the index, middle, ring, and little fingers was about 50% of the variance of the summed normal force of the four fingers. Of the five digits, the thumb, index, middle, ring and little fingers accounted for 50.0, 15.4, 14.6, 11.7 and 7.3% of the total normal force; and 39.4, 9.9, 19.3, 14.0 and 17.5% of the total vertical shear force (i.e. the load), respectively. The ratios of the normal force to the resultant shear force were 2.6, 4.5, 1.8, 2.2 and 1.3 for the thumb, index, middle, ring and little finger, respectively. The centre of pressure migration area of a single digit at the object-digit surface during object holding ranged from 0.30 to 1.21 mm(2). The current study reveals a number of detailed object-digit mechanics and multiple digits co-ordination principle. The results of this study may help to improve ergonomic designs that involve the usage of multiple digits.  相似文献   

11.
《Ergonomics》2012,55(7):840-847
This study examined the relationship between safety margin and force level during an isometric push task in a lateral pinch posture. Ten participants grasped an object with an aluminium- or rubber-finished grip surface using a lateral pinch posture and exerted 20%, 40%, 60%, 80% and 100% of maximum push force while voluntary grip force was recorded. Then minimum required grip force was measured for each push force level. Mean safety margin, the difference between voluntary and minimum required grip forces, was 25% maximum voluntary contraction (MVC) when averaged for all push levels. Safety margin significantly increased with increasing push force for both grip surfaces. Grip force used during maximum push exertion was only 74% lateral pinch grip MVC. Possible underlying mechanisms for increasing safety margin with increasing push force are discussed as well as the implication of this finding for ergonomic analysis. This study demonstrates that ergonomic analyses of push tasks that involve friction force should account for safety margin and reduced grip strength during the push. Failure to consider these can result in overestimation of people's push capability.  相似文献   

12.
《Ergonomics》2012,55(6):425-440
The current study investigated inter-digit co-ordination and object-digit interaction during sustained object holding tasks by using five, six-component force/torque sensors. The sum of the individual finger normal forces and the thumb normal force showed a parallel variation with a mean median correlation coefficient of 0.941. The normal force traces demonstrated the lowest coefficient of variation (about 9% as averaged across digits) as compared with other force/torque traces. The sum for the variances of the normal forces of the index, middle, ring, and little fingers was about 50% of the variance of the summed normal force of the four fingers. Of the five digits, the thumb, index, middle, ring and little fingers accounted for 50.0, 15.4, 14.6, 11.7 and 7.3% of the total normal force; and 39.4, 9.9, 19.3, 14.0 and 17.5% of the total vertical shear force (i.e. the load), respectively. The ratios of the normal force to the resultant shear force were 2.6, 4.5, 1.8, 2.2 and 1.3 for the thumb, index, middle, ring and little finger, respectively. The centre of pressure migration area of a single digit at the object-digit surface during object holding ranged from 0.30 to 1.21 mm2. The current study reveals a number of detailed object-digit mechanics and multiple digits co-ordination principle. The results of this study may help to improve ergonomic designs that involve the usage of multiple digits.  相似文献   

13.
Greig M  Wells R 《Ergonomics》2004,47(1):41-58
Prehensile grasp capability is typically quantified by pinch and grasp forces. This work was undertaken to develop a methodology to assess complex, multi-axis hand exertions through the measurement of forces and moments exerted by the hand along and about three orthogonal axes originating at the grip centre; termed an external wrench. Instrumentation consisting of a modified pinch/grip dynamometer affixed to a 6 df force cube was developed to simultaneously measure three forces, three moments and the pinch/grip force about the centre of the grip. Twenty right hand dominant manual workers (10 male and 10 female), free of hand or wrist disorders, completed a variety of maximal strength tasks. The randomized block design involved three separate grips--power grip, lateral pinch and pulp pinch. Randomized within each block were three non-concurrent repetitions of isolated maximal force and moment generations along and about the three principle orthogonal axes and a maximal grip force exertion. Trials were completed while standing, with the arm abducted and elbow flexed to 90 degrees with a wrist posture near neutral. Where comparable protocols existed in the literature, forces and moments exerted were found to be of similar magnitude to those reported previously. Female and male grip strengths on a Jamar dynamometer were 302.6 N and 450.5 N, respectively. Moment exertions in a power grip (female and male) were 4.7 Nm and 8.1 Nm for pronator, 4.9 Nm and 8.0 Nm for supinator, 6.2 Nm and 10.3 Nm for radial deviator, 7.7 Nm and 13.0 Nm for ulnar deviator, 6.2 Nm and 8.2 Nm for extensor, and 7.1 Nm and 9.3 Nm for flexor moments. Correlations with and between maximal force and moment exertions were only moderate. This paper describes instrumentation that allows comprehensive characterization of prehensile force and moment capability.  相似文献   

14.
《Ergonomics》2012,55(1):41-58
Prehensile grasp capability is typically quantified by pinch and grasp forces. This work was undertaken to develop a methodology to assess complex, multi-axis hand exertions through the measurement of forces and moments exerted by the hand along and about three orthogonal axes originating at the grip centre; termed an external wrench. Instrumentation consisting of a modified pinch/grip dynamometer affixed to a 6?df force cube was developed to simultaneously measure three forces, three moments and the pinch/grip force about the centre of the grip. Twenty right hand dominant manual workers (10 male and 10 female), free of hand or wrist disorders, completed a variety of maximal strength tasks. The randomized block design involved three separate grips?–?power grip, lateral pinch and pulp pinch. Randomized within each block were three non-concurrent repetitions of isolated maximal force and moment generations along and about the three principle orthogonal axes and a maximal grip force exertion. Trials were completed while standing, with the arm abducted and elbow flexed to 90° with a wrist posture near neutral. Where comparable protocols existed in the literature, forces and moments exerted were found to be of similar magnitude to those reported previously. Female and male grip strengths on a Jamar dynamometer were 302.6?N and 450.5?N, respectively. Moment exertions in a power grip (female and male) were 4.7 Nm and 8.1 Nm for pronator, 4.9 Nm and 8.0 Nm for supinator, 6.2 Nm and 10.3 Nm for radial deviator, 7.7 Nm and 13.0 Nm for ulnar deviator, 6.2 Nm and 8.2 Nm for extensor, and 7.1 Nm and 9.3 Nm for flexor moments. Correlations with and between maximal force and moment exertions were only moderate. This paper describes instrumentation that allows comprehensive characterization of prehensile force and moment capability.  相似文献   

15.
An experiment was performed to evaluate the relationships among active range of motion (ROM), gender, wrist position and direction of force exertion in their effects on the magnitude of static force exerted by the wrist-dedicated muscles in wrist flexion and extension. This study employed 60 right-hand-dominant subjects (30 male, 30 female) between 20 and 30 years of age, all reporting no prior wrist injury and good to excellent overall physical condition. The ROM of each subject was used to determine the number of wrist positions evaluated for static maximal voluntary forces generated in wrist flexion and extension while they were instructed to relax their fingers; thus only the six wrist-dedicated muscles were employed in the exertion. The ANOVA procedure showed gender, wrist position, direction of force exertion, and the wrist position interaction with direction to have significant effects upon maximal force exertion. Females averaged 76.3% of the mean male flexion force and 72.4% for extension. On average, extension forces were found to be 83.4% of those generated by flexing the wrist-dedicated muscles.  相似文献   

16.
The objective of this study is to evaluate the factors contributing toward hand-arm stress while operating an electric screwdriver. Hand-arm stress was investigated in terms of individual finger force exertion, flexor digitorum EMG, and hand-transmitted vibration. Two activation modes (push and push plus trigger (P + T)), two preset shut-off torque levels (low and high) and three horizontal operating distances (far, middle, and near) were evaluated. Thirteen healthy male subjects drove screws into a horizontally mounted iron plate with pre-tapped screw holes using an in-line electric screwdriver in randomly ordered experimental combinations. The results indicate that using push-to-start mode at low torque level was better than the other combinations of activation mode x torque because it resulted in less hand-arm stress. In addition, the far distance level (33-45 cm away from the work table edge) caused greater stress than the middle and near distances, and hence is best avoided. While operating an in-line electrical screwdriver, the force contribution of the small finger was greatest, followed by the ring finger. The average force contributions of the index, middle, ring, and small fingers were 19, 25, 27, and 30%, respectively, while operating with push-to-start mode.  相似文献   

17.
This study investigated the effects of screwdriver handle shape, surface, and workpiece orientation on subjective discomfort, number of screw-tightening rotations, screw-insertion time, axial screwdriving force, and finger contact forces in a screwdriving task. Handles with three longitudinal cross-sectional shapes (circular, hexagonal, triangular), four lateral shapes (cylindrical, double frustum, reversed double frustum, cone), and two surface materials (plastic, rubber coated) were tested. Individual phalangeal segment force distributions indicated how fingers and phalangeal segments were involved in the creation of total finger force (15.0%, 34.6%, 34.5%, and 15.9% for the index, middle, ring, and little fingers; and 45.7%, 22.4%, 12.9%, and 19.0% for the distal, middle, proximal, and metacarpal phalanges, respectively). From this finding, the index and little fingers appeared to contribute mainly in the guiding and balancing of the screwdriver handles, whereas middle and ring fingers played a more prominent role in gripping and turning. Participants preferred circular and hexagonal longitudinal-shaped and double frustum and cone lateral-shaped handles over the triangular longitudinal-shaped handles, and cylindrical and reversed double frustum lateral-shaped handles. Circular, cylindrical, and double frustum handles exhibited the least total finger force associated with screw insertion. In terms of combinations of longitudinal and lateral shapes, circular with double frustum handles were associated with less discomfort and total finger force.  相似文献   

18.
《Ergonomics》2012,55(12):2447-2454
The effect of friction and load on pinch force was studied in a simple hand transfer task using a repeated measures design and ten men. Subjects moved a container between two targets, 450?mm apart, at a slow, self-paced speed. The levels of mass in the container were set at 0·8, 2·5 and 4·2?kg (7·5, 24·5 and 41·5?N respectively). The handle materials were sandpaper and smooth aluminium. Applied pinch force was measured via a strain gauge mounted in a specially-designed handle attached to the container. Dependent variables were peak and ‘steady-state’ pinch force. The main and interaction effects of load and friction were significant. The friction effect was significant only for the highest load which, on average, elicited peak pinch forces of 16-70% of maximum voluntary force. This suggests that these men were not sensitive to friction effects at the lower loads. Results suggest that the use of tool handle friction enhancements may reduce required pinch forces for objects requiring upwards of 50% or more of maximum pinch strength  相似文献   

19.
The present study examined the maximum acceptable frequencies (MAFs; motions/min) of upper‐extremity motions in the sagittal plane at different forces. A dumbbell of 9.8 or 39.2 N was rotated by the arm about the shoulder, the forearm about the elbow, and the hand about the wrist; a dynamometer was pressed to 2.45 or 9.8 N by the index finger. Seventeen right‐handed Korean men in their 20s without any history of musculoskeletal disorders received 1 hour of individual training and conducted each upper‐extremity task for 30 minutes a day, assuming they were on an incentive basis. The participants determined their MAFs for 8 hours of work by the self‐adjustment method, and work pulse (change in heart rate; beats per minute [bpm]) and rating of perceived exertion (RPE) were measured. For a limited set of conditions, the reproducibility of the MAF experimental protocol was found satisfactory (r = 0.97; interclass correlation coefficient > 0.95). The average MAFs of arm, forearm, hand, and index finger motions were 24, 45, 56, and 128 at their low force level and 9, 20, 30, and 66 at their high force level. The average work pulses of arm, forearm, and hand motions were 3.0, 2.1, and 1.5 times that of index finger motion (4.2 bpm at their low force level and 5.7 bpm at their high force level). The maximum average RPEs at the upper‐extremity regions ranged from 2.1 (weak) to 3.1 (moderate) in Borg's CR‐10 scale. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
Evaluation of handgrip force from EMG measurements   总被引:2,自引:0,他引:2  
A series of experiments were performed in order to investigate whether estimates of handgrip force could be derived with fair accuracy from surface EMG levels recorded on the finger flexors of the forearm, taking into account the position of the wrist in the flexion-extension plane and in the ulnar-radial deviation plane. Handgrip forces (on a JAMAR dynamometer) and corresponding surface EMG levels (on the finger flexors of the forearm) were recorded for 20 subjects in 11 postures of the wrist and for 30% and 70% of the MVC in neutral posture. A mathematical empirical model was developed using multiple non-linear regression analysis. Although quite simple, it provides very reliable results, the correlation coefficient between predicted and observed forces being 0.895. Its use must, however, be restricted to work situations where: (a) the hand efforts are of the same type and involve the same muscles as those exerted on the dynamometer; (b) the hand is in neutral pro-supination; and (c) no voluntary effort is exerted by the wrist flexors except for maintaining the wrist posture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号