首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 195 毫秒
1.
Truck weight-limit regulations have significant influence on truck operating weights. These regulations directly influence loads applied to highway facilities, such as bridges and pavements. “Truck weight” herein collectively refers to a vehicle’s gross weight, axle weights, and axle configuration. Truck load spectra as a result of truck weight limits are important to bridge engineering in many respects, such as that of determining requirements for evaluation and design of bridges for both strength and fatigue. This paper’s objective is to present a new method for predicting truck weight spectra resulting from a change in truck weight limits. This method is needed to estimate impacts of the change on highway bridges such as accelerated fatigue accumulation. Historical and recent truck weight data are used to test and illustrate the proposed method, and the results show its good prediction capability. This method is also applied here to an example of estimating the impact on steel bridge fatigue due to a possible increase in the gross-vehicle-weight limit from 356 kN (80 kips) on five axles to 431 kN (97 kips) on six axles. Also included is an investigation of the AASHTO fatigue truck model for steel bridge evaluation. Results show that the current fatigue truck model may become invalid under the studied scenario of truck weight-limit increase.  相似文献   

2.
The results from a parametric study on the impact factors for 180 curved continuous composite multiple-box girder bridges are presented. Expressions for the impact factors for tangential flexural stresses, deflection, shear forces and reactions are deduced for AASHTO truck loading. The finite-element method was utilized to model the bridges as three-dimensional structures. The vehicle axle used in the analysis was simulated as a pair of concentrated forces moving along the concrete deck in a circumferential path with a constant speed. The effects of bridge configurations, loading positions, and vehicle speed on the impact factors were examined. Bridge configurations included span length, span-to-radius of curvature ratio, number of lanes, and number of boxes. The effect of the mass of the vehicle on the dynamic response of the bridges is also investigated. The data generated from the parametric study and the deduced expressions for the impact factors would enable bridge engineers to design curved continuous composite multiple-box girder bridges more reliably and economically.  相似文献   

3.
Design and evaluation of prestressed concrete I-girder bridges is in large part dependent on the transverse load distribution characteristics and the dynamic load amplification, as well as service level, live load, and tensile stresses induced in the girders. This study presents the results of field tests conducted on three prestressed concrete I-girder bridges to obtain dynamic load allowance statistics, girder distribution factors (GDF), and service level stress statistics. The field-based data are also compared to approximate and numerical model results. Bridge response was measured at each girder for the passage of test trucks and normal truck traffic. The dynamic amplification is observed to be a strong function of peak static stress and a weak function of vehicle speed and is independent of span length, number of axles, and configuration. GDFs for one- and two-lanes are less than code specified GDFs. Results from the numerical grillage models agree closely with experimentally derived results for transverse distribution.  相似文献   

4.
State-Specific LRFR Live Load Factors Using Weigh-in-Motion Data   总被引:1,自引:0,他引:1  
The LRFR Manual, within commentary Article C6.4.4.2.3, contains provisions for development of site-specific live load factors. In Oregon, truck weigh-in-motion (WIM) data were used to develop live load factors for use on state-owned bridges. The factors were calibrated using the same statistical methods that were used in the original development of LRFR. This procedure maintains the nationally accepted structural reliability index for evaluation, even though the resulting state-specific live load factors were smaller than the national standard. This paper describes the jurisdictional and enforcement characteristics in the state, the modifications used to described the alongside truck population based on the unique truck permitting conditions in the state, the WIM data filtering, sorting, and quality control, as well as the calibration process, and the computed live load factors. Large WIM data sets from four sites were used in the calibration and included different truck volumes, seasonal and directional variations, and WIM data collection windows. Finally policy implementation for actual use of the factors and future provisions for maintenance of the factors are described.  相似文献   

5.
Overweight vehicles require permits to cross the highway bridges, which are designed for “design load vehicles” (prescribed in the national standards). A new, fast, and robust method is presented for the verification of bridges, which requires minimal input only: the axle loads, axle spacing, the bridge span(s), and the superstructure type. The bridge can be a single or a multispan girder, an arch bridge, a frame structure, or a box girder. The overweight vehicle may operate within regular traffic or it may cross the bridge at a given lane position while other traffic is prohibited on the bridge. The method is illustrated by numerical examples for deck-girder bridges and for a box girder.  相似文献   

6.
This paper presents a method for determining the dynamic impact factors for horizontally curved composite single- or multicell box girder bridges under AASHTO truck loading. The bridges are modeled as three-dimensional structures using commercially available software. The vehicle is idealized as a pair of concentrated forces, with no mass, traveling in two circumferential paths parallel to the curved centerline of bridges. An extensive parametric study is conducted, in which over 215 curved composite box girder bridge prototypes are analyzed. The key parameters considered in this study are: Number of cells, number of lanes, degree of curvature, arc span length, slope of the outer steel webs, number and area of bracing and top chord systems, and truck(s) speed and truck(s) positioning. Based on the data generated from the parametric study, expressions for dynamic impact factors for longitudinal moment, reaction, and deflection are proposed as function of the ratio of the arc span length to the radius of curvature. The results from this study would enable bridge engineers to design horizontally curved composite box girder bridges more reliably and economically. Furthermore, the results can be used to potentially increase the live-load capacity of existing bridges to prevent posting or closing of the bridge.  相似文献   

7.
Heavy trucks represent a major load to highway bridges in the transportation infrastructure system. These loads are directly related to the truck weight limits of the jurisdiction, and largely determine the standard loads for bridge design and evaluation. Thus, truck weight limit is one of the major factors affecting bridge deterioration and expenditure for maintenance, repair, and/or replacement. Truck weight in this paper not only refers to the truck gross weight but also to the axle weights and spacings that affect load effects. This paper presents the concepts of a new methodology for estimating cost effects of truck weight limit changes on bridges in a transportation infrastructure network. The methodology can serve as a tool for studying impacts of such changes. The resulting knowledge is needed when examining new truck weight limits, several of which have been and are still being debated at both the state and federal levels in the United States. The development of this estimation method has considered maximizing the use of available data (such as the bridge inventory) at the state infrastructure system level. In application examples completed (but not reported herein), the costs for relatively inadequate strength of existing bridges and for increased design requirement for new bridges were found dominant in the total impact cost.  相似文献   

8.
This paper presents the procedure and results of field tests that were performed on two simply supported steel I-girder bridges to assess girder distribution and impact factors. The measurements were performed under normal truck traffic. Strain data were taken from bottom flanges of girders in the middle of a span. Additional strain data were obtained under passes of a control truck with known weight and configuration. A computerized data acquisition technique enabled selective recording of the significant blocks of the strain data under normal traffic. Strains were measured for two consecutive days on each bridge. Measured data consist of strain blocks from approximately 900 trucks. The strain records were filtered with a lowpass digital filter to remove the dynamic components and to obtain an equivalent static strain. The data were further processed to obtain statistical parameters (mean and standard deviation) of the girder distribution and impact factors. The results were compared with the values calculated according to American Association of State Highway and Transportation (AASHTO) methods. Measured girder distribution factors are lower than AASHTO values. Measured impact factors are well below AASHTO values.  相似文献   

9.
This technical paper discusses the implementation of a long-term bridge weigh-in-motion system for use in determining gross vehicle weights of trucks crossing steel girder bridges. The system uses strain data to determine truck weights using an existing structural health monitoring system installed on a interstate highway bridge. The applied system has the advantage of not using any axle detectors in the roadway; and instead all analyses are performed using strain gauges attached directly to the steel girders, providing for a long-term monitoring system with minimal maintenance. Long-term data has been used to demonstrate that this method can be readily applied to gain important information on the quantity and weights of the trucks crossing the highway bridge.  相似文献   

10.
The main objective of this research was to study the effects of different specified trucks on bridge rating with the load and resistance and factor rating (LRFR) procedure. Twelve specified trucks were selected for this study, which include one AASHTO design truck, three AASHTO legal trucks, and eight state legal trucks. These rating trucks were applied on 16 selected Tennessee Dept. of Transportation bridges to obtain the LRFR ratings. The selected bridges covered four commonly used bridge types, including prestressed I-beam bridges; prestressed box beam bridges; cast-in-place T-beam bridges; and steel I-beam bridges. The research results revealed that (1) LRFR AASHTO legal load ratings factors were enveloped by the LRFR HL-93 truck ratings factors, thereby confirming the validity of the LRFR tiered approach with regard to AASHTO legal loads; (2) the lighter state legal trucks were enveloped by the HL-93 loads, whereas the heavier state trucks with closer axle spacing typically resulted in load ratings that governed over the HL-93 loads; and (3) the bridges with both high average daily truck traffic and short spans were more likely to be governed by state legal load ratings instead of HL-93 load ratings.  相似文献   

11.
United States highway bridge design has advanced into the era of risk-based practice, milestoned by the American Association of State Highway and Transportation Officials Load and Resistance Factor Design Bridge Design Specifications. On the other hand, national and state design codes cannot specifically account for localized risk for each bridge site, which may have significantly different loading conditions from the national average. This issue is focused on here, as related to the adequacy of current bridge design loads for sites in the state of Michigan. The structural reliability indices are calculated for a randomly selected sample of new bridges from the Michigan inventory, including four major girder bridge types. Weigh-in-motion truck load data collected in Michigan are used to statistically characterize the truck load effect in the bridges’ primary members for moment and shear at critical cross sections. The reliability indices are found to vary significantly among the bridge sites and types investigated. Many of them indicate inadequate design load for the Detroit area.  相似文献   

12.
The objective of the present study was to experimentally evaluate the statistics of dynamically induced stress levels in steel through-truss bridges as a function of bridge component type, component peak static stress, vehicle type, and vehicle speed. Better understanding of critical bridge rating parameters will enable more accurate bridge evaluations of this type of structure. Three 60-year-old, steel through-truss bridges with similar characteristics were investigated in the present study. Several bridge components on each of the three bridges were instrumented (truss members, stringers, and floor beams), and dynamic strain data were collected under controlled and normal traffic conditions. The dynamic strain histories were processed to obtain bridge component peak static response and peak dynamic response, resulting in the determination of the dynamic load allowance (DLA) for each of the instrumented bridge components for each of several truck crossings. The calculated DLA value are plotted as a function of member peak static stress for each bridge member instrumented. The DLA data are examined as a function of component type, component location, truck type, number of axles, truck speed, and truck direction. This study has demonstrated that the DLA is dependent on truck location, component location, component type, and component peak static stress but appears to be nearly independent of vehicle speed.  相似文献   

13.
A new fatigue load model has been developed based on weigh-in-motion (WIM) data collected from three different sites in Indiana. The recorded truck traffic was simulated over analytical bridge models to investigate moment range responses of bridge structures under truck traffic loadings. The bridge models included simple and two?equally continuous spans. Based on Miner’s hypothesis, fatigue damage accumulations were computed for details at various locations on the bridge models and compared with the damage predicted for the 240-kN (54-kip) American Association of State Highway and Transportation Officials (AASHTO) fatigue truck, a modified AASHTO fatigue truck with an equivalent effective gross weight, and other fatigue truck models. The results indicate that fatigue damage can be notably overestimated in short-span girders. Accordingly, two new fatigue trucks are developed in the present study. A new three-axle fatigue truck can be used to represent truck traffic on typical highways, while a four-axle fatigue truck can better represent truck traffic on heavy duty highways with a significant percentage of the fatigue damage dominated by eight- to 11-axle trucks.  相似文献   

14.
Development of Truck Weight Regulations Using Bridge Reliability Model   总被引:2,自引:0,他引:2  
Historically, truck regulations have maintained controls on axle and gross weights with legal load formulas based on limiting allowable stresses in certain types of bridges. These stress limitations do not usually lead to consistent or defensible safety levels and also ignore the cost impact of the weight regulation on the national bridge network. This paper illustrates how new truck weight regulations can be developed to provide acceptable safety levels. Target safety levels are derived from existing AASHTO bridge evaluation and rating procedures applied to structures showing adequate performance levels. Reliability indices are used to relate the statistics of bridge load effects, based on either existing or proposed truck weight regulations, to the dynamic behavior and resistance variables of existing bridges. The sensitivity of the results to various assumptions and errors in the database is also analyzed. An accompanying paper reviews the consequences of adapting such a formula on the safety of existing bridges. The deterministic analysis as well as a reliability assessment are performed in the accompanying paper to review the consequences of adapting such regulations on the U.S. bridge network using the National Bridge Inventory files.  相似文献   

15.
Historically, truck weight regulations have maintained controls on axle and gross weights with legal load formulas based on limiting allowable stresses in certain types of bridges. These stress limitations do not usually lead to consistent or defensible reliability levels and also ignore the impact of the weight regulation on the existing highway bridge network. This paper is the second part of a two-paper series. The companion paper by the first writer illustrated how new truck weight regulations can be developed to provide an acceptable reliability level. The target reliability level was derived from bridge structures designed to satisfy AASHTO standard design specifications that showed safe and adequate performance levels under current truck loading conditions. In this part of the two-paper series, a deterministic load capacity evaluation as well as a reliability assessment are performed to review the consequences of adapting such regulations on the existing U.S. bridge network. A sensitivity analysis shows how changes in the safety criteria used to develop the truck weight regulations would affect the existing bridge network. Detailed load capacity evaluations and reliability analyses also are performed on a representative sample of bridges to provide specific examples of expected changes in rating and safety levels if the proposed truck weight regulation is to be adopted.  相似文献   

16.
It has been argued that the AASHTO LRFD design code for maximum live loads on highway bridges is overly conservative. In an attempt to determine the level of conservativeness, if any, the writers developed a methodology incorporating real-time visual data collection from traffic cameras coupled with structural strain response of girder bridges. Average daily truck traffic along with frequency of multiple presences (same lane as well as adjacent lanes) and lane-wise truck traffic distribution were estimated for a steel-girder highway bridge on I-95 in Delaware. These data compared well with predictions from a Poisson process based model developed for this study. Statistical properties of girder moments in single and multiple presence conditions were determined as well. In this particular example, the girder design moment on the 24.6?foot approach span according to AASHTO specifications was found to be about 3.5 times higher than that estimated from the in-service data.  相似文献   

17.
The paper presents a method for comparing the mechanical effects of overweight and design load vehicles on bridges. There is no restriction on the arrangement of the axles and on the size of the axle loads. The bridge may be a simple span bridge, a continuous girder, a truss girder, or an arch. Even for a very complex bridge structure the only required parameter of the bridge is the span length. The presented method is a robust and reliable tool for the permitting process of overweight vehicles, which is verified by several thousand comparisons.  相似文献   

18.
Past research has been conducted on the behavior of horizontally curved girders by testing scaled models and full-scale laboratory bridges and by analyzing numerical models. Current design specifications are based on this past research; however, little field data of in-service bridges exist to support the findings of the past research on which the current design criteria are based. The purpose of the present study was to gather field response data from three in-service, curved, steel I-girder bridges to determine behavior when subjected to a test truck and normal truck traffic. Transverse bending distribution factors and dynamic load allowance were calculated from the data collected. Numerical grillage models of the three bridges were developed to determine if a simple numerical model will accurately predict actual field measured transverse bending distribution, deflections, and cross-frame and diaphragm shear forces. The present study found that AASHTO specifications are conservative for both dynamic load allowance and transverse bending moment distribution. The grillage models were found to predict with reasonable accuracy the behavior of a curved I-girder bridge.  相似文献   

19.
Since the first edition of the AASHTO Guide Specifications for Horizontally Curved Steel Girder Highway Bridges was published in 1980, there have been two more editions including many revisions to the specifications. Some changes were based on valid research results and others were based on limited or uncertain research results and information. The current edition of the specifications contains provisions that may result in unreasonably conservative load capacity ratings. In this paper, the results of field tests and analyses conducted on the Veterans’ Memorial curved steel-box girder bridge are discussed. Test and analytical results show: (1) current AASHTO guide specifications regarding the first transverse stiffener spacing at the simple end support of a curved girder may be too conservative for bridge load capacity ratings; (2) current AASHTO guide specifications may greatly overestimate the dynamic loadings of curved box girder bridges with long span lengths; and (3) a plane grid finite-element model of about 20 elements per span in the longitudinal direction can be used to analyze curved multigirder bridges with external bracings located only over supports. The research results are instructive and applicable to bridge design and bridge load-rating activities.  相似文献   

20.
Based on data collected by weigh-in-motion (WIM) measurements, truck traffic is synthesized by type and loading condition. Three-dimensional nonlinear models for the trucks with significant counts are developed from the measured data. Six simply supported multigirder steel bridges with spans ranging from 10.67 m (35 ft) to 42.67 m (140 ft) are analyzed using the proposed method. Road surface roughness is generated as transversely correlated random processes using the autoregressive and moving average model. The dynamic impact factor is taken as the average of 20 simulations of good road roughness. Live-load spectra are obtained by combining static responses with the calculated impact factors. A case study of the normal traffic from a specific site on the interstate highway I-75 is illustrated. Static loading of the heaviest in each truck type is compared with that of the American Association of State Highway and Transportation Officials standard design truck HS20-44. Several important trucks causing fatigue damage are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号