首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An inexpensive method was developed to measure local gas holdup based on withdrawal of the air–liquid dispersion in bioreactors under non-isokinetic conditions. The method was tested with several suction probe designs and withdrawal pressures using coalescing and non-coalescing model media as well as during yeast fermentations. Simultaneously, gas holdup was measured manometrically. With a straight end probe and vacuum pressure of 3 kPa, local gas holdup measurements presented a relative error <6% compared to the manometric method, independently of the media composition. This method was used to characterize local gas holdup in a bubble column. Two new parameters are proposed to characterize non-gassed volume and gas holdup homogeneity.  相似文献   

2.
Numerical simulations of gas-liquid flow in a cylindrical bubble column of 400 mm in diameter at the superficial gas velocity were conducted to investigate effects of the configuration of gas distributors on hydrodynamic behaviour, gas hold-up and mixing characteristics. Eight different gas distributors were adopted in the simulation. The simulation results clearly show that the configuration of gas distributor have an important impact on liquid velocity and local gas hold-up in the vicinity of the gas distributor. Comparisons of the overall gas holdup and mixing time among different gas distributors have demonstrated that none of the adopted gas distributors was able to produce the highest interfacial area and also yield the shortest mixing time. The CFD modelling results reveal that an increase in the number of gas sparging pipes used in gas distributors is beneficial in improving the gas hold-up but is disadvantageous in reducing bubble size due to a decrease in turbulent kinetic dissipation. It has been demonstrated from the simulations that the appearance of asymmetrical flow patterns in the bubble column and the adoption of smaller gas sparging pipes for gas distributors are effective in improving the mixing characteristics.  相似文献   

3.
The external loop airlift bubble column has been regarded as a promising type of gas-liquid or gas-liquid-solid biooreactor because of the liquid circulating flow between the riser and downcomer. A mini-scale column is useful and efficient in the process research and development for highly specialized materials such as fine chemicals, advanced bioproducts and biocatalysts utilized in two or three phase system. In this work, a mini-scale glass column of in volume was designed and characterized. The gas holdup εG in the riser was obtained by measuring the volume expansion through photographs taken with a digital camera. The liquid circulating velocity UL was measured by observing the time required for a tracer particle to travel a fixed distance in the downcomer through analysis of the images taken by a video camera. The gas-liquid volumetric oxygen transfer coefficient kLa and liquid-solid oxygen transfer coefficient kS were determined by our previous method in which the air oxidation of glucose was catalysed by the immobilized glucose oxidase gel beads suspended in the column to obtain a pseudo steady state concentration of the dissolved oxygen and the corresponding constant rate of glucose consumption. It was shown that even such a mini-scale external loop bubble column could be characterized in terms of gas holdup, liquid circulating velocity and mass transfer properties according to our previous correlations proposed for the bench to pilot scale column.  相似文献   

4.
An experimental investigation is reported on the effect of fiber length distribution on gas holdup in a cocurrent air-water-fiber bubble column. Different combinations of 1 and 3 mm Rayon fibers are used to simulate different fiber length distributions. At a constant total fiber mass fraction, gas holdup generally decreases with increasing mass fraction of the 3 mm Rayon fiber while other conditions remain constant. Crowding factors estimated using four different methods (Nc=Nc,A, , Nc,L, and Nc,M) and the parameters and are tested on their performance to quantify the overall effects of fiber mass fraction and fiber length and its distribution on gas holdup. and provide the best characterization of the fiber effects on gas holdup in the cocurrent air-water-fiber bubble column. The crowding factor estimated using the model-based average fiber length (Nc,M) also provides a good characterization and is better than the other crowding factor definitions.  相似文献   

5.
The dynamic environment within the bioreactor and in the purification equipment is known to affect the activity and yield of enzyme production. In the present work, the effect of hydrodynamic flow parameters and τN,max) and interfacial flow parameters ( and ) on the activity of lipase has been comprehensively investigated in bubble column reactors. Lipase solution was subjected to hydrodynamic flow parameters in 0.15 and 0.385 m i.d. bubble column reactors over a wide range of superficial gas velocity (0.01<VG<0.4-). The flow parameters were estimated using an in-house CFD simulation code based on k-ε approach. The extent of lipase deactivation in both the columns was found to increase with an increase in hydrodynamic and interfacial flow parameters. However, at equal value of any of these parameters, the extent of deactivation was different in the two columns. The rate of deactivation was found to follow first order kinetics. An attempt has been made to develop rational correlations for the extent of deactivation as well as for the deactivation constant. The rate of deactivation was found to be depending on the average turbulent normal stress and interfacial flow parameters such as bubble diameter and bubble rise velocity.  相似文献   

6.
A solution methodology is proposed for the process development and process engineering of a continuously operated jet loop bubble column including integrated external or internal steam generation for, e.g., a high-efficiency large-scale medium pressure methanol and or dimethyl ether production, or other gas to liquid Fischer-Tropsch applications.A jet loop bubble column is defined in the present process development to study the combined integration of a jet-eductor draft tube system with an upper bubble column. The major advantages resulting from the integrated jet-eductor draft tube system in large-scale bubble columns are the guidance and good mixing efficiency of the multiphase flow up to the upper part of the bubble column. Reducing the bubble column operating liquid level at about 2.5-3.0 times of the column diameter above the upper end of the draft tube results in a classical jet-eductor draft tube reactor suitable for small and or medium-scale industrial applications.Methanol synthesis is usually executed catalytically in multistage packed beds at higher pressure, e.g. 26 MPa, and about 350-, resulting in a higher plant installation and operating cost. The successful scale-up of a slurry jet loop bubble column can achieve a higher catalytic selectivity at a lower pressure and temperature , and therefore reduce the overall plant investment and production cost [Toseland, 1999. Three phase flows under extreme conditions of pressure and temperature, Part II: industrial applications, Air products and Chemicals, Inc. Presented at the A.I.Ch.E. Annual Meeting, Dallas, TX; Fan, 1999. Three phase flows under extreme conditions of pressure and temperature, Part I: fundmental characteristics, Department of Chemical Engineering, The Ohio State University. Presented at the A.I.Ch.E. Annuxal Meeting, Dallas, TX]. In addition, the separate slurry production of dimethyl ether, or even coproduction with methanol, can be a more cost-effective process than the classical methanol dehydration process.The new Modified Slurry Process© for large-scale methanol and or dimethyl ether production is presented including internal or external heat exchanger location for steam production.A process concept is developed of a Large Scale Slurry Jet Loop Bubble Column© with external separator, auxiliary internal heat exchanger equipment and high-efficiency gas-liquid slurry jet-eductor mixing system including draft tubes and an upper bubble column. In addition, as comparison a simplified concept is discussed for a small-to-medium-scale slurry jet loop reactor including external steam production and bottom nozzle jet-eductor installation without the presence of an upper bubble column.The basic geometrical parameters of the proposed slurry jet loop bubble column and jet loop reactor are discussed. The influence of the selected geometrical parameters on the gas holdup, interfacial area and mixing is analyzed. Information about catalyst type and particle size distribution is also presented.The definition of optimal operating conditions related to the influence of the fluid dynamics and mixing on mass transfer efficiency and also information for the minimum required power input per unit volume for startup or stable reactor operation are discussed.A simplified estimation method is presented for the expected axial temperature difference across the overall length of the jet bubble column, and also the required heat transfer area of a new construction-type internal compact heat exchanger for efficient reactor cooling and operation.Scale-up is possible for large diameter jet loop bubble columns, typically up to 5 m diameter and 60 m height, including continuous three-phase slurry operation at higher power input and interfacial area, for more efficient synthesis gas absorption and reaction than in classical slurry bubble columns. Integration of suitable designed sieve trays can further guarantee an efficient operation of the lower jet loop draft tube system at higher column diameters and also achieve an efficient reactor operation in the upper bubble column section.  相似文献   

7.
Three bubble column diameters (D=10.2, 15.2, and 32.1 cm) are employed to study the scale-up effect on gas holdup in air-water and air-water-cellulose fiber (hardwood, softwood, and BCTMP) systems. The effect of column diameter depends on flow regime and fiber mass fraction. When , gas holdup decreases with increasing column diameter for the transitional and heterogeneous flow regime, and column diameter effects are negligible in the homogeneous flow regime. When , gas holdup is only affected by column diameter in the transitional flow regime for an air-water system and low fiber mass fraction suspensions (C?0.25%); column diameter effects disappear at medium fiber mass fractions (e.g., C=0.8%) but are significant at high fiber mass fractions (e.g., C=1.4%).  相似文献   

8.
9.
Mass transfer in multiphase systems is one of the most studied topics in chemical engineering. However, in three-phase systems containing small particles, the mechanisms playing a role in the increased rate of mass transfer compared to two-phase systems without particles, are still not clear. Therefore, mass transfer measurements were carried out in a 2D slurry bubble column reactor , a stirred tank reactor with a flat gas-liquid interface, and in a stirred tank reactor with a gas inducing impeller. The rate of mass transfer in these reactors was investigated with various concentrations of active carbon particles (average particle size of ), with electrolyte (sodium gluconate), and with combinations of these. In the bubble column, high-speed video recordings were captured from which the bubble size distribution and the specific bubble area were determined. In this way, the specific mass transfer area agl was determined separately from the mass transfer coefficient kl. Mechanisms proposed in literature to describe mass transfer and mass transfer enhancement in stirred tank reactors and bubble columns are compared. It is shown that the increased rates of mass transfer in the 2D bubble column and in the stirred tank reactor with the gas inducing impeller are completely caused by an increased gas-liquid interfacial area upon addition of carbon particles and electrolyte. It is suggested that an increased level of turbulence at the gas-liquid interface caused by carbon particles accounts for a smaller effective boundary layer thickness and an enhancement of mass transfer in the flat gas-liquid surface stirred tank reactor. However, for the carbon particles used in this study, it is rather unlikely that mass transfer enhancement takes place due to the well-known shuttle or grazing effect.  相似文献   

10.
In this work, the effects of surface-active contaminants on mass transfer coefficients kLa and kL were studied in two different bubble contactors. The oxygen transfer coefficient, kL, was obtained from the volumetric oxygen transfer coefficient, kLa, since the specific interfacial area, a, could be determined from the fractional gas holdup, ε, and the average bubble diameter, d32. Water at different heights and antifoam solutions of 0.5- were used as working media, under varying gas sparging conditions, in small-scale bubble column and rectangular airlift contactors of 6.7 and capacity, respectively. Both the antifoam concentration and the bubble residence time were shown to control kLa and kL values over a span of almost 400%. A theoretical interpretation is proposed based on modelling the kinetics of single bubble contamination, followed by sudden surface transition from mobile to rigid condition, in accordance with the stagnant cap model. Model results match experimental kL data within ±30%.  相似文献   

11.
12.
This paper focuses on the effect of surfactants on the mass transfer parameters (volumetric mass transfer coefficient kLa and liquid-side mass transfer coefficient kL). Tap water and aqueous solutions with surfactants (anionic, cationic and non-ionic at concentrations up to are used as liquid phases. The bubbles are generated into a small-scale bubble column having an elastic membrane with a single orifice as gas sparger. To understand the effects of the surfactants on the mass transfer, not only the static surface tension is used, but also the characteristic adsorption parameters like the surface coverage ratio at equilibrium Se. The liquid-side mass transfer coefficient is obtained from the ratio of the volumetric mass transfer coefficient (measured by a chemical method) and the specific interfacial area. These two parameters are obtained simultaneously. The methods used to obtain these parameters are described in Painmanakul et al. [2005. Effects of surfactants on liquid-side mass transfer coefficients. Chemical Engineering Science 60, 6480-6491].Whatever the liquid phase, three zones are found on the liquid-side mass transfer coefficient variation with the bubble diameter. For bubble diameters less than 1.5 mm, whatever the liquid phases, the kL values are roughly constant at . For bubble diameters greater than 3.5 mm, the kL values do not vary much with the bubble diameter, but depend on the surfactant concentration. For bubble diameters between 1.5 and 3.5 mm, the kL values increase from to the value reached at 3.5 mm. This increase depends on the surfactants. Higbie's model does not represent the kL values for bubble diameters greater than 3.5 mm, even though there is a small amount of surfactant in the liquid phase. Thus, a model is proposed for each zone described above. Explanations are also proposed for the effect of the surfactant on the kL values for each of the above zones.  相似文献   

13.
Catalytic hydrogenations reactions are frequently conducted in “dead-end” multiphase stirred reactors with the reactant dissolved either in an alcohol, or in water or a mixture of the two. In such systems, the rate of gas-liquid mass transfer, which depends on bubble size, may well be the overall rate-limiting step. However, a study of bubble sizes across the whole range of solvent compositions from entirely water to entirely organic has not been reported. Here, for the first time, a systematic investigation has been made in a 3 L, closed vessel simulating a “dead-end” reactor containing 1% by volume of air which is dispersed by a Rushton turbine in water, isopropanol (IPA) and mixtures of the two, with and without 2-butyne-1,4-diol simulating a reactant. Mean specific energy dissipation rates, , up to have been used and bubbles size distributions and mean size were measured using a video-microscope-computer technique. In the single component solvents (water, ; IPA, though the interfacial tensions are very different, irregular, relatively large bubbles of similar sizes were observed ( in IPA, and in water) with a wide size distribution. In the mixed aqueous/organic solvents, and especially at the lower concentrations of IPA (1%, 5%, 10%), the bubbles were spherical, much smaller (d32 from 50 to ) with a narrow size distribution. The addition of the reactant (0.2 M 2-butyne-1,4-diol) to the mixed solvents had little effect on the mean size, shape or distribution. However, addition to water (thus producing a mixed aqueous/organic liquid phase) led to small spherical bubbles of narrow size distribution. Neither Weber number nor surface tension was suitable for correlating bubble sizes since σ decreased steadily from pure water to IPA whilst bubble size passed through a minimum at around 5% IPA. For any particular fluid composition, the functionality between d32 and was similar, i.e. . The above observations are explained in terms of the polarisation of bubble surfaces in miscible mixed aqueous/organic liquids caused by preferential directional adsorption at low concentrations of the organic component with its hydrophilic part directed into the aqueous phase and its hydrophobic part into the gas phase. As a result, coalescence is heavily suppressed in the low-concentration miscible alcohol (or diol)/aqueous systems whilst strong coalescence dominates bubble sizes in water and the alcohol and at high concentrations of the latter.  相似文献   

14.
The advantages from a 4-l external-loop inversed fluidized bed airlift bioreactor (EIFBAB) reported by Loh and Liu [2001. Chemical Engineering Science 56, 6171-6176] was synergized with preferential adsorption by granular activated carbon (GAC) for the enhanced cometabolic biotransformation of 4-chlorophenol (4-cp) in the presence of phenol as a growth substrate. This was achieved by incorporating a GAC fluidized bed in the lower part of the riser with the gas sparger relocated above this fluidized bed to avoid the presence of a 3-phase flow in the fluidized bed consequently providing larger gas holdup. Expanded polystyrene beads (EPS) were used as the supporting matrix for immobilizing Pseudomonas putida ATCC 49451, in the downcomer of the bioreactor. The hydrodynamics of the bioreactor system was characterized by studying the effect of the extent of valve opening, under cell-free condition, on gas holdup and liquid circulation velocity at different gas velocities and solids loading (EPS and GAC). The experimental data for gas holdup were modeled using power law correlations, while a Langmuir-Hinshelwood kinetics model was used for the liquid circulation velocity. The bioreactor was tested for batch cometabolic biotransformation of 4-cp in the presence of phenol at various concentration ratios of phenol and 4-cp (ranging from phenol: 4-cp to phenol: 4-cp) at 9% EPS loading and 2.8% (10 g) GAC loading. The 4-cp and phenol biotransformations were achieved successfully in the bioreactor system, which ascertained the feasibility of the bioreactor. Biotransformation of high 4-cp and phenol concentrations, which was oxygen limited, was also effectively achieved by increasing the gas holdup in the riser. This was possible in the current EFBAB system because of the synergistic effect of the GAC fluidized bed, the globe valve and cell immobilization by EPS.  相似文献   

15.
The interfacial surface area concentration in a short vertical column subject to the through flow of a solid-liquid-gas slurry made by mixing aqueous fibrous paper pulp with a nitrogen-carbon dioxide gas mixture was measured in the study. The gas absorption technique was applied, using CO2 as the transferred species and sodium hydroxide as the alkaline agent in water. The flow regimes in the experiments were visually identified, and the test section void fraction was measured using a Gamma-ray densitometer.The test section was a -long column with inner diameter. The ranges of experimental parameters were as follows: liquid-pulp superficial velocity 15-; average gas-superficial velocity 17-; pulp consistency in the water/pulp mixture 0.0-2.18%; and average mole fraction of carbon dioxide in the gas mixture 0.19-0.95. A total of 33 data points were obtained, each representing the average of three to nine tests that confirmed reasonable repeatability. Statistical analysis of the experimental data indicates strong dependence of interfacial area on average gas superficial velocity and void fraction; and a relatively weak dependence on pulp consistency and liquid superficial velocity. The effect of pulp consistency on the interfacial area concentration in the test section was particularly interesting. The test section average interfacial surface area concentration decreased with increasing consistency up to a consistency of 1.6%, but increased significantly when consistency was further increased to 2.18%. The experimental data were empirically correlated.  相似文献   

16.
The process of bubble formation is involved in several gas-liquid reactors and process equipment. It is therefore important to understand the dynamics of bubble formation and to develop computational models for the accurate prediction of the bubble formation dynamics in different bubbling regimes. This work reports the numerical investigations of bubble formation on submerged orifices under constant inflow conditions. Numerical simulations of bubble formation at high gas flow rates, where the bubble formation is dominated by inertial forces, were carried out using the combined level set and volume-of-fluid (CLSVOF) method and the predictions were experimentally validated. Effects of gas flow rate and orifice diameter on the bubbling regimes and in particular, on the transition from period-1 to period-2 bubbling regime (with pairing or coalescence at the orifice) were investigated. Using the simulation data on the transition of bubble formation regimes, the bubble formation regime map constructed using Froude and Bond numbers is presented.  相似文献   

17.
The effects of the ejector geometry (nozzle diameter and mixing chamber) and the operating conditions (liquid circulating rate, liquid level in column) on the hydraulic characteristics in a rectangular bubble column with a horizontal flow ejector were determined. The gas phase holdup increases with increasing liquid circulating rate but decreases with increasing liquid level in the column. In the multiphase CFD simulation with the mixture model and the experiments, the gas suction rate increases with increasing liquid circulating rate. However, the gas suction rate decreases with increasing the liquid level in the column and nozzle diameter. The predicted values from the CFD simulation are well accord to the experimental data.  相似文献   

18.
Interfacial area concentration of bubbly flow systems   总被引:2,自引:0,他引:2  
  相似文献   

19.
The experimental study of gas dispersion in a vertical periodically, constricted, oscillatory meso-tube (OMT) is herein presented. Water was continuously pumped through the OMT in the laminar flow regime along with an oscillatory flow component superimposed into the net flow in a range of fluid oscillation frequency (f) and centre-to-peak amplitude (x0) of and 0-3 mm, respectively, in the presence of a very low superficial gas velocity . Bubble images were recorded with a CCD camera and analysed with Visilog® software. A bimodal distribution of bubble size was in general observed but the bubble size was found strongly dependent on the oscillatory flow mixing conditions imposed into the fluid. A number fraction of micro-bubbles (with an equivalent diameter, Deq, equal or bellow 0.2 mm) up to 60% was generated with increasing values of x0 (i.e. 3 mm) and values of f in the range . Furthermore, it is demonstrated that the Sauter mean diameter, D32, and the specific interfacial area, a, can be fined tune by setting both f and x0 in this studied range. The high number fraction of micro-bubbles was concluded to have a positive impact in enhancing the liquid-side mass transfer coefficient, kL. Globally, the differences in bubbles sizes were found to play a marginal effect in the global enhancement of the kLa in the meso-tube in comparison with the intensive contact experimented by the bubbles rising in the oscillatory flow. The higher order of magnitude of the kL values found in this work (up to ) is promising for running numerous industrial gas-liquid flows processes through smaller and better, while aeration of biotransformations can be run more efficiently, as supported by our recent proof-of-concept studies carried out in the platform.  相似文献   

20.
The hydrodynamic changes resulting from the addition of very small quantities of a non-volatile liquid into a cold conventional fluidized bed has been investigated, and compared with the effects of increasing the particle size in a dry bed. Three different particle mixtures belonging to Group A/B, Group B and Group B/D were assessed. The changes in regime transition velocities, pressure drop, bubble rise velocity, bubble frequency and bubble flow rate have been quantified by employing Electrical Capacitance Tomography measurements. A new analysis method for measuring the effective interparticle forces (Fip) and the effective drag force (Fd) in a dry fluidized bed is described, and the results are presented in terms of different force ratios including the single particle weight (W). It is shown that the addition of a few drops of liquid to a dry bed of Group B or B/D introduces similar hydrodynamic changes (except, in terms of bubble frequency) as that of increasing the bed particle size, and these particular changes shift the powders away from Group A/B behaviour. It is also illustrated that for beds of different particle sizes, a typical bubbling behaviour can be achieved at a specific gas velocity, this velocity coincides with the point of equality in hydrodynamic force ratios and Eip/Fd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号