首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
A porous nickel film is prepared by selectively anodic dissolution of copper from an electrodeposited Ni-Cu alloy film. A porous nanostructured nickel hydroxide film electrode is further fabricated by the cathodic electrodeposition of Ni(OH)2 film on the obtained porous nickel film. The specific capacitances of the as-prepared porous nanostructured Ni(OH)2 film electrode at current densities of 2, 5 and 10 A/g are 1634, 1563 and 1512 F/g, respectively. The nanoporous Ni substrate significantly improves the electrochemically cyclic stability of the electrodeposited nickel hydroxide film in 1.0 M KOH solution. The superior pseudocapacitive properties such as large specific capacitance, excellent rate capability and improved electrochemically cyclic stability of the as-prepared nickel hydroxide electrode suggest its potential application in electrochemical capacitors.  相似文献   

2.
1 Introduction Electrochemical capacitors (hereafter ECs) have greater power density than usual batteries and can be deeply discharged without any deleterious effect on life time[1]. Activated carbon(AC) with various modifications is the electrode materia…  相似文献   

3.
Samples of lanthanum-doped nickel hydroxide were prepared by electrodeposition method. The structure and electrochemical properties of the samples were studied by X-ray diffraction and a home-made open three-electrode cell system, respectively. The results show that the deposition process of Ni(OH)2 and La(OH)3 is mainly controlled by electrochemical polarization, which makes it easy to form uniform fine crystals. In addition, La(OH)3 is not a separate phase and lanthanum ions are doped into Ni(OH)2 crystal lattices. When V(0.5 mol/L Ni(NO3)2)/V(0.25 mol/L La(NO3)3) was 9:1, the lanthanum-doped nickel hydroxide reached the highest discharge capability of 840 F/g with a good cyclic reversibility. The capability still retains 670 F/g when the discharge current reaches 1000 mA/g.  相似文献   

4.
Electrochemical performance of multiphase nickel hydroxide   总被引:1,自引:0,他引:1  
The high density nano-crystalline multiphase nickel hydroxide containing at least three doping elements was synthesized and its electrochemical characteristics were studied. The electrochemical behavior of the high density spherical multiphases α-Ni(OH)2 were also investigated. The results show that the structure of the material is a mixed phase of α-Ni(OH)2 and β-Ni(OH)2, which has a the same stabilized structure as α-Ni(OH)2 during long-term charge/discharge process. High density spherical multiphases α-Ni(OH)2 have a much better redox reversibility, a much lower oxidation potential of Ni( Ⅱ) than the corresponding oxidation state in the case of β-Ni(OH)2, and a much higher reduction potential. They exchange one electron during electrochemical reaction and have a higher proton diffusion coefficient. The mechanism of the electrode reaction is proton diffusion, and the proton diffusion coefficient is 5.67×10^-10 cm^2/s. Moreover, they reveal a higher discharge capacity than β-Ni(OH)2/β-NiOOH because they exchange one electron per nickel atom during charge/discharge process.  相似文献   

5.
Eighteen as-cast binary Mg–Ni, Mg–Mm and ternary Mg–Ni–Mm and Mg–Ni–TM (TM=transition metals (Cu, Zn, Mn and Co); Mm = mischmetal containing Ce, La, Nd and Pr) alloys were hydrided by an electrochemical process to determine the alloys with the most potential for electrochemical hydrogen storage. The alloys were hydrided in a 6 mol/L KOH solution at 80 °C for 480 min and at 100 A/m2. To assess the electrochemical hydriding performance of alloys, maximum hydrogen concentrations, hydrogen penetration depths and total mass of absorbed hydrogen in the alloys were measured by glow discharge spectrometry. In addition, the structures and phase compositions of the alloys both before and after hydriding were studied by optical and scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. It was determined that the highest total amount of hydrogen was absorbed by the Mg–25Ni–12Mm and Mg–26Ni (mass fraction, %) alloys. The maximum hydrogen concentrations in the Mg–25Ni–12Mm and Mg–26Ni alloys were 1.0% and 1.6%, respectively. The main hydriding product was the binary MgH2 hydride, and the ternary Mg2NiH4 hydride was also detected in the Mg–25Ni–12Mm alloy. The electrochemical hydriding parameters achieved are discussed in relation to the structures of alloys, alloying elements and hydriding mechanisms.  相似文献   

6.
采用LaNi5稀土合金作为催化剂,用化学气相沉积法(CVD)制备了碳纳米管。研究了含有5%碳纳米管的LaNi5稀土合金电极样品的电化学性能。测定了碳纳米管电极的电化学储氢性能。实验发现:含有碳纳米管的LaNi5稀土合金的电化学放电容量更高,当放电电流密度为100mA/g时,其电化学储氢量高达385mAh/g。其循环寿命也得到了较大改善。循环100次,放电容量仅下降15%。  相似文献   

7.
The effects of mechanical grinding with or without nickel powder on microstructure and electrochemical properties of Ce2Mg17 hydrogen storage alloy in 6 M KOH solution were investigated. The microstructure and electrochemical properties depend greatly on the amount of nickel powder introduced during mechanical grinding. For the alloy ball-milled with nickel powder, the more nickel powder added, the more advantageous it is for the formation of a homogeneous amorphous structure, and the larger discharge capacity obtained. After 90 h ball-milling, the Ce2Mg17 + 200 wt.% Ni composite exhibited a large discharge capacity of 1014 mAh g(Ce2Mg17)−1[338 mAh g(Ce2Mg17 + 200 wt.% Ni)−1] at 303 K. The improvement of electrochemical capacity can be attributed to the formation of a homogeneous amorphous structure as well as the modification of the surface state by Ni addition.  相似文献   

8.
Mg2Ni, Mg1.5Al0.5Ni, Mg1.5Zr0.5Ni, Mg1.5Ti0.5Ni, Mg1.5Zr0.25Al0.25Ni, Mg1.5Zr0.25Ti0.25Ni and Mg1.5Ti0.25Al0.25Ni alloys were synthesized by mechanical alloying and their electrochemical hydrogen storage characteristics were investigated. X-ray diffraction studies showed that while Al was retarding, Zr and Ti were facilitating the amorphization of Mg2Ni phase. The initial discharge capacities of Mg1.5Ti0.5Ni, Mg1.5Zr0.5Ni and Mg1.5Al0.5Ni alloys were 414, 322 and 166 mA h g−1, respectively. Although Mg1.5Al0.5Ni alloy had very low initial discharge capacity, the capacity retaining rate of this alloy was much better than those of Ti- and Zr-including alloys. The potentiodyanamic polarization experiments in 6 M KOH solution presented that Mg was passive and Ni was immune in the charge/discharge potential range (−1.0 VHg/HgO and −0.5 VHg/HgO). At the same conditions Ti and Zr had moderate, and Al had extremely higher dissolution rates. The analysis by the electrochemical impedance spectroscopy revealed that the increase in the charge transfer resistance of Mg1.5Al0.5Ni alloy was relatively low with the increase in depth of discharge. This observation was attributed to the formation of the porous unstable Mg(OH)2 layer due to the high rate dissolution of the disseminated Al2O3 and thus the exposition of the underlying electro-catalytically active Ni sites. The charge transfer resistance of Mg1.5Ti0.5Ni alloy increased sharply with the increase in depth of discharge possibly due to the stabilizing effect of Ti-oxide on Mg(OH)2. The presence of Ti-oxide, however, was predicted to make Mg(OH)2 barrier layer more penetrable by hydrogen atoms, since the increased stability of the surface layer the cyclic stability of Mg1.5Ti0.5Ni alloy was relatively satisfactory.  相似文献   

9.
通过化学镀再电化学氧化的方法在铜片表面制备出带有微米微坑和微米微球的均一NiO/Ni(OH)2和B参杂的NiO/Ni(OH)2(B)两种电极材料,采用扫描电镜(SEM/EDX)、X射线衍射(XRD)、X射线光电子能谱(XPS)和电化学技术对所制备的两种电极材料进行表征和电化学性能测试。SEM、XRD和XPS的测试结果表明, 所制备的两种电极材料由Ni、NiO和Ni(OH)2组成,并且NiO/Ni(OH)2(B)中B的参杂量可达14.6wt%。循环伏安测量和恒电流充放电试验表明,两种电极材料均具有较高的电化学活性和可逆性;在1 A/g的充放电电流密度下, 两种NiO/Ni(OH)2和NiO/Ni(OH)2(B)电极材料经历10000次充放电循环后分别给出了1380 和1930F/g的比电容, 显示出较高的比电容特性和良好的电化学稳定性;电化学阻抗谱表明NiO/Ni(OH)2(B)电极材料较NiO/Ni(OH)2电化学反应电阻降低了约2个数量级;Ragone曲线揭示了所制备的两种电极材料具有较高的功率密度和较低的能量密度。B的参杂使得NiO/Ni(OH)2(B)电极材料表面氧化物含量增大并且形成微米微球形貌,增大了电极表面积以及与电解液的接触和润湿作用,降低了电极材料表面能带带隙能,从而导致较小的电化学反应电阻和电导率的提高是其显示优异赝电容性能的主要原因。  相似文献   

10.
The electrochemical behaviour of nickel in alkaline aqueous solutions within the anodic potential range yielding Ni(OH)2 and under different potentiodynamic perturbations profiles has been investigated. The formation of Ni(OH)2 is characterized by an irreversible anodic current peak which is quantitatively interpreted in terms of a complex reaction pathway involving different hydroxoadsorbed species.  相似文献   

11.
Potential-pOH diagrams of some components constituting AB5-type Mm-based (Mm: misch metal) hydrogen storage alloy were drawn at various temperatures to predict the deterioration behaviors of the alloy in an alkaline solution at relatively high temperatures. Based on these diagrams, the thermodynamic stability of each constituent of the alloy in 6 M KOH solution at various temperatures was evaluated. As A components, in the charge–discharge potential range, Nd(OH)3 was extremely stable at temperatures lower than 70°C, while Ce(OH)3 was oxidized to CeO2 at the end of discharge above −0.496 V versus NHE at 70°C. On the other hand, as B components, Mn, Al and Co dissolved easily as HMnO2, AlO2 and HCoO2 ions in 6 M KOH solution and their solubility increased with increasing temperature. However, HCoO2 ion was reduced to metallic Co at the charge process. All oxidation reactions, particularly the dissolution of Mn and Al, proceeded at relatively high temperatures.  相似文献   

12.
Samples of lanthanum-doped nickel hydroxide were prepared by electrodeposition method. The structure and electrochemical properties of the samples were studied by X-ray diffraction and a home-made open three-electrode cell system,respectively. The results show that the deposition process of Ni(OH)2 and La(OH)3 is mainly controlled by electrochemical polarization,which makes it easy to form uniform fine crystals. In addition,La(OH)3 is not a separate phase and lanthanum ions are doped into Ni(OH)2 crystal la...  相似文献   

13.
Nano-scale Ni(OH)2 doped with Zn was prepared by precipitation transformation method and characterized by XRD and TEM. The electrochemical performance was investigated by cyclic voltammetry (CV) and constant current technology. The measurement results indicate that the lattice parameters of nano-scale Ni(OH)2 are changed and the agglomeration of particles becomes obvious with the increased Zn-doped content. Compared with un-doped one, the discharge specific capacities of nano-scale Ni(OH)2 doped with 10% Zn are enhanced by 8% and 6%, respectively, at the discharge rate of 0.2C and 3C. After 110 cycles, the discharge specific capacity of the sample doped with 10% zinc is still above 85% of its initial capacity discharged at 0.2C. Therefore, a suitable Zn-doped content is beneficial to improving the discharge performance of nano-scale Ni(OH)2.  相似文献   

14.
In order to reduce the price of nickel hydroxide and extend the application of nickel based alkaline secondary batteries, Mn substituted nickel hydroxide (Ni1−xMnx(OH)2, x = 0-0.4) was prepared by using a simple ball milling method in this paper. The optimal ball milling conditions were obtained for the preparation of Ni0.8Mn0.2(OH)2. The results of X-ray diffraction, electrochemical impedance spectroscopy and charge-discharge tests indicated that (i) a structure of β-Ni(OH)2 was maintained for Ni1−xMnx(OH)2; (ii) the surface electrochemical activity of nickel hydroxide could be effectively improved by Mn substitution; (iii) capacity of Ni0.8Mn0.2(OH)2 reached 282 mA h/g and it showed an excellent cycling durability; (iv) compared to no-substituted nickel hydroxide, Ni0.8Mn0.2(OH)2 showed a decrease both in charge-discharge plateau and capacity; but with the increase of discharge rate, the difference in discharge plateau between them was smaller, and capacity of the latter exceeded the former.  相似文献   

15.
为了改善镍锌电池的性能,同时研究电极中添加剂对锌电极性能的影响,选用正交设计对影响锌电极的4个因素(乙炔黑、Bi2O3、PbO、包覆La(OH)3的Ca[Zn(OH)3]2·2H2O)选择3个水平进行测试。对没有任何添加剂的氧化锌在20%KOH电解液中进行充放电循环实验,研究添加剂的作用。为了更好地解释锌电极放电容量衰减的原因,对正交实验的最差样品和最优样品放电产物所含的Zn和Ca的比例进行分析。通过表征,得出了在该实验条件下的电极添加剂的最优配比方案为:在5g样品中,乙炔黑0.02g,Bi2O3 0.5g,PbO 0.3 g,包覆La(OH)3的Ca[Zn(OH)3]2·2H2O)0.2g。  相似文献   

16.
1 Introduction MH/Ni batteries have supper specific energy density, better performance of charging and discharging, and are friendly to the surroundings. So, MH/Ni batteries have been applied widely in power tools[1]. The design of MH/Ni batteries is limi…  相似文献   

17.
采用超声波辅助沉淀法制备Cu单掺杂和Cu/Al复合掺杂的纳米Ni(OH)2样品,测试样品的晶相结构、粒径、形貌、振实密度及电化学性能。结果表明,样品均具有α相结构且其平均粒度的分布范围窄,Cu单掺杂的纳米Ni(OH)2呈现不规则形态,而Cu/Al复合掺杂的纳米Ni(OH)2呈准球状且具有更大的振实密度。将纳米样品以8%的比例掺入到商业用微米级球形镍中制成混合电极。充放电和循环伏安测试结果表明,Cu/Al复合掺杂纳米Ni(OH)2的电化学性能优于Cu单掺杂的纳米Ni(OH)2的,前者的放电比容量最高达到330mA·h/g(0.2C),比Cu单掺杂样品的高12mA·h/g,比纯球镍电极的高91mA·h/g。此外,Cu/Al复合掺杂纳米样品的质子扩散系数比Cu单掺杂样品的高52.3%。  相似文献   

18.
为改善Mg2Ni储氢合金电化学性能,采用机械合金化法(Mechanical Alloying,MA),分别制备出改性合金Mg1.8 Zr Ni以及MgTi3,按一定比例和Ni混合球磨,制备出纳米晶或非晶化的Mg1.8Zr0.2Ni- (1.2-x)Ni -xMgTi3复合储氢合金。研究结果表明,经部分取代改性和包覆修饰后的复合储氢合金,其表面和内部形成较多的纳米级褶皱、空隙层状和多相结构缺陷。随着MgTi3含量增加,Mg1.8Zr0.2Ni- (1.2-x)Ni -xMgTi3复合储氢合金初始放电比容量也逐渐增加,当MgTi3含量为x=0.5时,合金初始放电比容量为973.3 mAh.g-1。但MgTi3含量超过x=0.5时,其初始放电比容量又有所下降,研究表明添加MgTi3却不利于复合储氢合金的循环稳定性和高倍率放电性能。通过对Mg1.8Zr0.2Ni- (1.0-x)Ni -xMgTi3复合储氢合金进行线性极化、阳极极化和交流阻抗测试,进一步研究了系列合金电极的表面电化学反应、电荷转移过程、氢在合金中的扩散情况以及它们的电化学性能。  相似文献   

19.
Tobacco stem-based activated carbons (TS-ACs) were prepared by simple KOH activation and their application as electrodes in the electrical double layer capacitor (EDLC) performed successfully. The BET surface area, pore volume, and pore size distribution of the TS-ACs were evaluated based on N2 adsorption isotherms at 77?K. The surface area of the obtained activated carbons varies over a wide range (1472.8-3326.7?m2/g) and the mesoporosity was enhanced significantly as the ratio of KOH to tobacco stem (TS) increased. The electrochemical behaviors of series TS-ACs were characterized by means of galvanostatic charging/discharging, cyclic voltammetry, and impedance spectroscopy. The correlation between electrochemical properties and pore structure was investigated. A high specific capacitance value as 190?F/g at 1?mA/cm2 was obtained in 1?M LiPF6-EC/DMC/DEC electrolyte solution. Furthermore, good performance is also achieved even at high current densities. A development of new use for TS into a valuable energy storage material is explored.  相似文献   

20.
The corrosion and electrochemical behaviors of pure aluminum in KOH‐ionic liquid‐water solutions with variable volume ratios of water and the ionic liquid 1‐butyl‐3‐methyl imidazolium tetrafluoroborate (BMIMBF4) were for the first time investigated by means of hydrogen collection, polarization curve, galvanostatic discharge, and electrochemical impedance spectroscopy (EIS). The results of hydrogen collection experiments showed that aluminum has a low corrosion rate in KOH‐BMIMBF4‐H2O solutions, and the corrosion rate decreases with increase in BMIMBF4 content in the electrolytes. The results of electrochemical experiments revealed that aluminum is electrochemically active over a very wide potential window in the KOH‐BMIMBF4‐H2O solutions, and its electrochemically kinetic mechanism is similar to that in the corresponding aqueous solution; the increase in KOH and water contents in the electrolytes may improve the anodic dissolution performance of aluminum. It was found that aluminum presents excellent galvanostatic discharge performance in the 2.0 M KOH BMIMBF4‐H2O mixed solution with 60% water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号