首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term (circa 3 months) simultaneous measurements of indoor concentrations of thoron gas, airborne thoron progeny and radon were made using passive alpha track detectors in 205 dwellings in Ireland during the period 2007-09. Thoron progeny concentrations were measured using passive deposition monitors designed at the National Institute of Radiological Sciences (NIRS), Japan, whereas thoron gas concentrations were measured using Raduet detectors (Radosys, Budapest). Radon concentrations were measured in these dwellings by means of NRPB/SSI type alpha track radon detectors as normally used by the Radiological Protection Institute of Ireland (RPII). The concentration of thoron gas ranged from <1 to 174 Bq m(-3) with an arithmetic mean (AM) of 22 Bq m(-3). The concentration of radon gas ranged from 4 to 767 Bq m(-3) with an AM of 75 Bq m(-3). For radon, the estimated annual doses were 0.1 (min), 19.2 (max) and 1.9 (AM) mSv y(-1). The concentration of thoron progeny ranged from <0.1 to 3.8 Bq m(-3) [equilibrium equivalent thoron concentration (EETC)] with an AM of 0.47 Bq m(-3) (EETC). The corresponding estimated annual doses were 2.9 (max) and 0.35 (mean) mSv y(-1). In 14 or 7% of the dwellings, the estimated doses from thoron progeny exceeded those from radon.  相似文献   

2.
Measurements of radon, thoron and their progeny were carried out in some houses from Garhwal and Kumaun Himalayas of India using a LR-115 plastic track detector. The measurements were made in various residential houses of the area at a height of 2.5 m above the ground level using a twin chamber radon dosemeter, which can record the values of radon, thoron and their progeny separately. The concentrations of radon and thoron in these homes were found to vary from 11 to 191 and 1 to 156 Bq m(-3), respectively. The equilibrium factor between radon and progeny varies from 0.02 to 0.90, with an average of 0.26 for the region. The resulting dose rate due to radon, thoron and their decay products was found to vary from 0.02 to 0.84 μSv h(-1) with an arithmetic mean of 0.27 μSv h(-1). A detailed analysis of the distribution of radon, thoron and their decay products inside a house is also reported. The observed dose rates due to radon, thoron and progeny were found somewhat higher but well below the international recommendations.  相似文献   

3.
This paper deals with the results of the first-field use in the Balkans, i.e. Serbia and Republic of Srpska (Bosnia and Hercegovina), of a passive polycarbonate Mark II type and poliallyldiglycol carbonate (Cr-39) alpha track detectors sensitive to thoron as well as to radon. Both types of solid state nuclear track detectors were designed and supplied by National Institute of Radiological Sciences (NIRS), Chiba, Japan. The commercial names for these detectors which all have been field tested in Balkan rural communities are known as: UFO and RADUET passive discriminative radon/thoron detectors. No database of thoron and thoron progeny concentrations in dwellings in Serbia or Balkans region exist, and as a result, the level of exposure of the Serbian population to thoron and its progeny is unknown so far.  相似文献   

4.
Alpha and beta activities per unit volume of air due to radon ((222)Rn), thoron ((220)Rn) and their progenies were measured in the air of natural caves by using CR-39 and LR-115 type II solid-state nuclear track detectors. Equilibrium factors between radon and its daughters and between thoron and its progeny were evaluated in the atmospheres studied.  相似文献   

5.
Simultaneous indoor radon, radon-thoron progeny and high-resolution in situ gamma spectrometry measurements, with portable high-purity Ge detector were performed in 26 dwellings of Thessaloniki, the second largest town of Greece, during March 2003-January 2005. The radon gas was measured with an AlphaGUARD ionisation chamber (in each of the 26 dwellings) every 10 min, for a time period between 7 and 10 d. Most of the values of radon gas concentration are between 20 and 30 Bq m(-3), with an arithmetic mean of 34 Bq m(-3). The maximum measured value of radon gas concentration is 516 Bq m(-3). The comparison between the radon gas measurements, performed with AlphaGUARD and short-term electret ionisation chamber, shows very good agreement, taking into account the relative short time period of the measurement and the relative low radon gas concentration. Radon and thoron progeny were measured with a SILENA (model 4s) instrument. From the radon and radon progeny measurements, the equilibrium factor F could be deduced. Most of the measurements of the equilibrium factor are within the range 0.4-0.5. The mean value of the equilibrium factor F is 0.49 +/- 0.10, i.e. close to the typical value of 0.4 adopted by UNSCEAR. The mean equilibrium equivalent thoron concentration measured in the 26 dwellings is EEC(thoron) = 1.38 +/- 0.79 Bq m(-3). The mean equilibrium equivalent thoron to radon ratio concentration, measured in the 26 dwellings, is 0.1 +/- 0.06. The mean total absorbed dose rate in air, owing to gamma radiation, is 58 +/- 12 nGy h(-1). The contribution of the different radionuclides to the total indoor gamma dose rate in air is 38% due to 40K, 36% due to thorium series and 26% due to uranium series. The annual effective dose, due to the different source terms (radon, thoron and external gamma radiation), is 1.05, 0.39 and 0.28 mSv, respectively.  相似文献   

6.
The behaviour of ubiquitous radon (222Rn), thoron (220Rn) and their progeny in the indoor atmosphere generally reflects a complex interplay between a number of processes, the most important of which are radioactive alpha-decay, ventilation, attachment to aerosols and deposition on surfaces. The present work involved a long-term (1997-2000) passive monitoring of 222Rn and 220Rn in the indoor environment of Shillong, Meghalaya. The north-east region of India being a zone of high seismicity, the indoor radon and thoron map of the region will provide a better insight and a valuable database for any study related to radon and thoron anomalies.  相似文献   

7.
Some areas of the world, called high background radiation areas (HBRAs), have anomalously high levels of natural background radiation and the population residing in the areas is exposed to higher levels of radiation doses than other parts of the world where the natural radioactivity contents are normal. In the present investigation, levels of radon, thoron and their progeny are studied in 110 houses in the coastal region of the Kollam district in the state of Kerala, India using the multi-detector twin cup dosimeter. Among these, 10 houses were studied in detail with five dosimeters in each house. Radon activity concentrations were found to vary from 7 to 100 Bqm(-3) and that of thoron from 4 to 66 Bqm(-3) in Neendakara panchayat. In Chavara panchayat, the variations of radon concentrations were from 7 to 83 Bqm(-3) and thoron concentrations were varied from 4 to 86 Bqm(-3). The occurrence of radon and thoron concentrations in the dwellings for both study areas shows that in 50% of the dwellings, the concentration of radon is about 25 Bqm(-3) and in 60% of the dwellings thoron concentration is about 15 Bqm(-3). The ratio of thoron-to-radon concentrations in the dwellings showed a mean value 0.55 (GM=0.45) for the region.  相似文献   

8.
The thoria dissolver, used for separation of (233)U from reactor-irradiated thorium metal and thorium oxide rods, is no longer operational. It was decided to carry out assessment of the radiological status of the dissolver cell for planning of the future decommissioning/dismantling operations. The dissolver interiors are expected to be contaminated with the dissolution remains of irradiated thorium oxide rods in addition to some of the partially dissolved thoria pellets. Hence, (220)Rn, a daughter product of (228)Th is of major radiological concern. Airborne activity of thoron daughters (212)Pb (Th-B) and (212)Bi (Th-C) was estimated by air sampling followed by high-resolution gamma spectrometry of filter papers. By measuring the full-energy peaks counts in the energy windows of (212)Pb, (212)Bi and (208)Tl, concentrations of thoron progeny in the sampled air were estimated by applying the respective intrinsic peak efficiency factors and suitable correction factors for the equilibration effects of (212)Pb and (212)Bi in the filter paper during the delay between sampling and counting. Then the thoron working level (TWL) was evaluated using the International Commission on Radiological Protection (ICRP) methodology. Finally, the potential effective dose to the workers, due to inhalation of thoron and its progeny during dismantling operations was assessed by using dose conversion factors recommended by ICRP. Analysis of filter papers showed a maximum airborne thoron progeny concentration of 30 TWLs inside the dissolver.  相似文献   

9.
The importance of (220)Rn (thoron) progeny for human exposure has been widely recognised in the past decades. Since no stable equilibrium factor was found between indoor thoron and its progeny, and the concentration of thoron progeny varies with time, it is necessary to develop detectors for long-term measurement that directly sample and detect thoron progeny. However, power supply of this kind of detectors has always been a problem. In this study, a set of device that is suitable for long-term measurement is introduced. A high-voltage electric field was formed for the collection of charged aerosols attached by (222)Rn (radon) and thoron progenies on solid-state nuclear track detector. Impact from radon progeny could be eliminated with a shield of Al foil of appropriate thickness. Tests were made both in an experimental house and in a thoron chamber in Helmholtz Zentrum München to determine the parameters and to verify the universality under different conditions.  相似文献   

10.
The technique of computational fluid dynamics (CFD) was used to study the concentrations and distributions of indoor radon (222Rn) and thoron (220Rn) as well as their progeny in three dimensions. According to the simulation results, in a naturally ventilated room, the activity distribution of 222Rn is homogeneous except for the places near air diffuser (supply and exhaust) locations. The concentration of 220Rn exponentially decreases with the distance from the source wall which is considered independently. However, as the ventilation rate increased, the concentrations of both 222Rn and 220Rn decreased and their activity distributions become complicated due to the effect of turbulent flow. It suggests that the impact factors of monitoring conditions (sampling site, airflow characteristics, etc.) should be taken into account in obtaining representative concentrations of 222Rn/220Rn for dose assessment. Both the simulation results of activities and their distributions agreed well with the experimental results in a laboratory room. It suggests that the CFD models may be applicable for the estimation of indoor 222Rn and 220Rn as well as their progeny.  相似文献   

11.
CFD modelling of thoron and thoron progeny in the indoor environment   总被引:1,自引:0,他引:1  
Thoron (220Rn) exhalation from building materials has become increasingly recognised as a potential source for radiation exposure in residences. However, contrary to radon (222Rn), limited information on thoron exposure is available. The purpose of this study is to estimate the concentration of thoron and its progeny products in a typical Dutch living room using computational fluid dynamics. The predicted thoron concentration is ~9 Bq m(-3) using a source term of 14 Bq s(-1) for the thoron exhalation from building materials. The concentration varies from 15 Bq m(-3) near the building materials to 2.7 Bq m(-3) in the centre of the living room. The mean effective dose from thoron progeny is calculated as 0.09 mSv y(-1), with a total effective dose from radon and thoron progeny of 0.38 mSv y(-1).  相似文献   

12.
Naturally occurring isotopes of radon in indoor air are identified as the second leading cause of lung cancer after tobacco smoking. Radon-222 (radon gas) and radon-220 (thoron gas) are the most common isotopes of radon. While extensive radon surveys have been conducted, indoor thoron data are very limited. To better assess thoron exposure in Canada, radon/thoron discriminating detectors were deployed in 45 homes in Fredericton and 65 homes in Halifax for a period of 3 months. In this study, radon concentrations ranged from 16 to 1374 Bq m(-3) with a geometric mean (GM) of 82 Bq m(-3) and a geometric standard deviation (GSD) of 2.56 in Fredericton, and from 4 to 2341 Bq m(-3) with a GM of 107 Bq m(-3) and a GSD of 3.67 in Halifax. It is estimated that 18 % of Fredericton homes and 32 % of Halifax homes could have radon concentrations above the Canadian indoor radon guideline of 200 Bq m(-3). This conclusion is significantly higher than the previous estimates made 30 y ago with short-term radon measurements. Thoron concentrations were below the detection limit in 62 % of homes in both cities. Among the homes with detectable thoron concentrations, the values varied from 12 to 1977 Bq m(-3) in Fredericton and from 6 to 206 Bq m(-3) in Halifax. The GM and GSD were 86 Bq m(-3) and 3.19 for Fredericton, and 35 Bq m(-3) and 2.35 for Halifax, respectively. On the basis of these results, together with previous measurements in Ottawa, Winnipeg and the Mont-Laurier region of Quebec, it is estimated that thoron contributes ~8 % of the radiation dose due to indoor radon exposure in Canada.  相似文献   

13.
An approach for retrospective measurements of thoron ((220)Rn) and radon ((222)Rn) by home-stored CDs/DVDs is proposed. It employs analysis of alpha tracks at two depths beneath the disk surface. The signal in the first one (69 μm) is due both to (220)Rn and (222)Rn, while the signal at the second (80 μm) is due only to (222)Rn. The second signal is used as to measure (222)Rn, as well as to determine and subtract 'the (222)Rn component' from the first signal. The remaining '(220)Rn component' is used to measure thoron. Numerical modelling is performed and the results show that simultaneous retrospective measurements of thoron and radon are possible over a wide range of environmental concentrations.  相似文献   

14.
In this study, several Hungarian dwellings and working places were surveyed using passive radon- and thoron-measuring devices (Radopot(?) and Raduet(?)) from 2003 to 2008. The detectors were placed 15-30 cm from the wall throughout the 1- to 3-month period. In dwellings, the presence of thoron, ~100 Bq m(-3), was detected almost in all cases, ; however, in the cellars of these buildings, a value ~200 Bq m(-3) was typical. In the cases of manganese and bauxite mines, the concentration of thoron was mainly 200 and 500 Bq m(-3), respectively. In caves, it was 1000 Bq m(-3), whereas in the radon bath it was ~100 Bq m(-3). As in many cases, the ratio between thoron and radon concentrations was >0.25 and the dose contribution from thoron and its progeny was not negligible. Therefore, further investigation on the thoron progeny will be necessary for an accurate dose estimation.  相似文献   

15.
The monitoring of radon exposure at workplaces is of great importance. Up to now passive measurement systems have been used for the registration of radon gas. Recently an electronic radon gas personal dosemeter came onto the market as an active measurement system for the registration of radon exposure (DOSEman; Sarad GmbH, Dresden, Germany). In this personal monitor, the radon gas diffuses through a membrane into a measurement chamber. A silicon detector system records spectroscopically the alpha decays of the radon gas and of the short-lived progeny 218Po and 214Po gathered onto the detector by an electrical field. In this work the calibration was tested and a proficiency test of this equipment was made. The diffusion behaviour of the radon gas into the measurement chamber, susceptibility to thoron, efficiency, influence of humidity, accuracy and the detection limit were checked.  相似文献   

16.
Indoor radon and its progeny levels were measured during 2005-06 in Bangalore rural district and in Bangalore City by using Solid State Nuclear Track Detector (SSNTD)-based twin cup dosemeters, and the activity of radium present in soils and rocks was measured by using HPGe detector. Fifty dwellings of different types were chosen for the measurement. The dosimeters containing the detector (LR-115 Type II Film) used in each house were fixed 2 m above the floor. After an exposure time of 90 days, films were etched to reveal tracks. From the track density, the concentrations of radon were evaluated. The value of radon concentration in the indoor air near granite quarries varies from 55 to 300 Bq.m(-3) with a median of 155 Bq.m(-3) and its progeny varies from 0.24 to 19.6 mWL with a median of 8.4 mWL. In Bangalore City, the concentration of radon varies from 18.4 to 110 Bq.m(-3) with a median of 45 Bq.m(-3) and its progeny varies from 1.62 to 11.24 mWL with a median of 4.15 mWL. Higher concentrations of radon and its progeny were observed in granite quarries compared with Bangalore City. The main reason for the higher indoor radon and its progeny concentration is due to the mining activity and the types of the bedrock. The concentration of radon mainly depends on the activity of radium present in soils and rocks and the types of building materials used. The activity of radium varies in granitic regions of Bangalore rural district from 42.0 to 163.6 Bq.kg(-1) with a median of 112.8 Bq.kg(-1). The concentrations of indoor radon and its daughter products and equivalent effective dose are discussed.  相似文献   

17.
A new grab sampling method has been developed for the measurement of 18F attached to aerosol particles. It is based on direct β-counting of filtered aerosol sample over successive time intervals by an end-window Geiger–Müller counter. The effect of the progeny of radon and thoron on the β-counting rate is separated by analysing the decay curve. The defined solid angle absolute counting was used to evaluate the efficiencies for 18F and for the progeny of radon and thoron one by one. Absolute activity concentration of 18F can be determined with less than 10% systematic error. Glass-fibre filter and high sampling flow rate are applied, leading to a detection limit for 18F of less than 1 Bq m−3. The method was tested under different circumstances in the PET centre of University of Debrecen, Hungary.  相似文献   

18.
A radon test facility for small animals was developed in order to increase the statistical validity of differences of the biological response in various radon environments. This paper illustrates the performances of that facility, the first large-scale facility of its kind in Japan. The facility has a capability to conduct approximately 150 mouse-scale tests at the same time. The apparatus for exposing small animals to radon has six animal chamber groups with five independent cages each. Different radon concentrations in each animal chamber group are available. Because the first target of this study is to examine the in vivo behaviour of radon and its effects, the major functions to control radon and to eliminate thoron were examined experimentally. Additionally, radon progeny concentrations and their particle size distributions in the cages were also examined experimentally to be considered in future projects.  相似文献   

19.
To estimate annual average concentrations in Korean dwellings and the effective dose to the general public, nationwide surveys on radon were conducted in 1989, 1999-2000 and 2002-2005. The total number of dwellings was about 5600. A survey of thoron and its decay products was also conducted in 2002-2005. In 2008-2009, a new radon survey in 1100 public buildings was conducted. The annual arithmetic (AM) and geometric (GM) means of indoor radon concentration in total were 62.1 ± 66.4 and 49.0 ± 1.9 Bq m(-3), respectively. The annual AM and GM means of indoor thoron concentrations were 40.4 ± 56.0 and 10.7 ± 2.9 Bq m(-3), respectively. The radon and thoron concentrations in detached houses were much higher than those in apartments. The locations of the high radon or thoron houses seem to be correlated with the concentrations of their parent nuclides in surface soil. The mean individual doses of radon and thoron were calculated to be 1.65 and 0.17 mSv y(-1), respectively.  相似文献   

20.
An electrostatic chamber system used for measuring thoron in the exhaled breath of thorium workers is calibrated using a standard thoron source and a scintillation cell counting system. A formulation based on both a streamlined flow model and a well-mixed flow model in the chamber has been made to estimate thoron concentration in breath from the observed alpha counts. The experimental measurements of the ratio of the outlet and the inlet thoron concentrations across the chamber strongly validate the well-mixed flow model for thoron, as against the streamlined flow model. The progeny collection efficiency on the electrode has been found to be 70%. The study points out a major error by a factor of approximately 25 in the calibration factor reported in an earlier work. From the present study, the minimum detectable limit of the activity of (224)Ra, freely emanating thoron at mouth works out to be 0.36 Bq as against 0.014 Bq reported earlier for the same system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号