首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 204 毫秒
1.
To obtain the superior strength‐ductility‐balance of TRIP‐grades, a special chemical composition in combination with well adapted processing parameters are a prerequisite. Despite of their excellent formability performance in terms of drawability as characterized by high n‐ and elongation values, compared to mild steels TRIP‐grades are challenging in the press and the body shops. The high strength level in combination with the high work hardening of TRIP‐grades result in higher levels of spring back compared to mild steels and higher press forces are required. Furthermore, a higher sensitivity to failure for sharp bending radii and a deterioration of the formability of punched edges is reported for TRIP‐grades. While spring back can only be minimized by advanced forming processes supported by new simulation techniques with improved ability to predict spring back, the sensitivity to failure under special forming conditions can be influenced by optimizing microstructural features. Contrary to the forming behaviour, which is influenced significantly by the microstructure, the weldability is mainly governed by the chemical composition and the surface condition of the material. The high carbon content of TRIP‐grades compared to mild steels results in a higher hardening potential after welding. Additionally, a fracture behaviour untypical for mild steels after destructive testing of spot welds is sometimes observed for TRIP‐grades, which is assessed critically by some OEMs. In this work, after a discussion of the processing conditions, possibilities are demonstrated to improve the forming behaviour by an optimization of the microstructure and the spot weldability by adapting the chemical composition of low‐alloyed TRIP grades. First very promising results for TRIP‐grades with a minimum tensile strength level of 700 MPa are discussed.  相似文献   

2.
The transformation induced plasticity (TRIP) steels effect occurs because of the martensitic transformation of retained austenite during plastic deformation,and it provides the steel with excellent strength and ductility.While welding remains a vital part of auto body manufacturing,the weldability of TRIP steels is problematic,and this prevents its adoption for many applications in the automotive industry.This present work studies the effects of welding and post-weld heat treatment on the microstructure of TRIP steels.It is found that the microstructures of the fusion zone and the heat affected zone (HAZ) are changed after high-temperature heat treatment.Hardness tests revealed that fusion zone hardness decreased with increasing of temperatures in the post-weld heat treatment on the laser weld seam.The rolling performance of the welding seam and the seam of post-weld heat treatment were also studied.  相似文献   

3.
The application of advanced high strength steels in automotive industry has highlighted the need for research into spot weldability of these steels.Using weld lobe diagrams,the spot weldability of DP600 steel was found to be poor with conventional weld schedules.An enhanced weld schedule consisting of two pulses with reduced current on the second pulse gave a substantial increase in the lobe width;the first pulse removed the zinc coating and the second pulse controlled the nugget growth.A data acquisition system was designed to monitor weld expulsion during the weld operation.Of the three possible control strategies proposed,especially with AC welding equipment,the dynamic resistance signal is easily obtained and the least expensive.Expulsion phenomena,microstructural characterization and mechanical properties of spot-welded hot dipped galvanized DP600 steel and interstitial free steel were investigated.Further work on dissimilar welds in DP 600 and HSLA 350 was also conducted with emphasis on tensile and fatigue properties and fracture characteristics.The performance of dissimilar spot welds was different from that of the similar spot welds in each of the HSLA350 and DP600 steels.The DP600 weld properties played a dominating role in the hardness and tensile properties of the dissimilar spot welds.However,the fatigue performance of the dissimilar welds was similar to that of the HSLA welds.Details will be presented at the conference.  相似文献   

4.
A considerable research effort has been done in the field of cold rolled TRIP steels submitted to a two‐step annealing cycle. After annealing, these steels contain retained austenite, which offers them superior mechanical properties required for specific applications in automotive industry. In the present work, a physically based microstructural model has been applied to describe the static stress‐strain behaviour of phosphorus alloyed TRIP steel. The impact of the TiC precipitation on the static stress‐strain behaviour for a Ti micro‐alloyed TRIP steel was simulated. The model calculations were compared with experimental stress‐strain curves. An excellent agreement between simulation and experimental data was demonstrated.  相似文献   

5.
In this paper, resistance spot weldability of high‐Mn steels were investigated in order to get high reliability in welded joints of automotive components. Microstructural characterizations, cross‐tensile test (CTT), microhardness tests of spot welded parts were conducted. The effects of weld current on the microstructural characteristics, mechanical properties, and fracture modes were investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The hardness in the weld nugget was observed to be lower than that in the base metal (BM). In CTT, the failure initiation was observed to occur at the boundary of the weld nugget. Also welding imperfections of welded parts were investigated. Liquation cracking in heat affected zone (HAZ), porosity, and shrinkage cavity were found most common welding defects in welded parts. Furthermore, the effects of welding imperfections on weld quality and failure criteria were identified and discussed.  相似文献   

6.
At present high strength thin sheet steel grades are gaining considerable market shares due to the intensified application in the automotive industry. Although several new high strength steels for cold forming have been developed and continuously improved for some decades there is still a necessity to increase the formability at a given high strength level. TRIP steels are a consistent further step to meet these requirements. Most of the published work concentrates on compositions with high C, Mn and Si contents which causes problems during production. Therefore in this work TRIP steels with reduced C and Si contents were produced and the influence of the annealing parameters on the microstructure and mechanical properties was investigated in detail for production via continuous annealing lines. Based on these investigations optimized heat cycles were proposed.  相似文献   

7.
Car bodies are increasingly made with high‐strength steels, for both lightweighting and safety purposes. Steel sheets, made by continuous casting, hot rolling, cold rolling, and continuous heat treating, are used to deep draw the car body parts, which are then joined by resistance spot welding (RSW). Two high‐strength automotive steels, with similar tensile strength, are studied here. The low alloy, dual‐phase steel consist of ferrite and martensite, obtained by an intercritical heat treatment, followed by fast cooling. The innovative, high‐Mn TWIP steel exhibits a promising combination of strength and toughness, arising from the austenitic structure, strengthened by C, and from the twinning induced plasticity effect. Tensile specimens are fatigue tested at room temperature with zero load ratio, both in the as‐fabricated (unnotched) condition and after the RSW of an homologous sheet square. Moreover, pre‐cracked compact tension specimens are tested with load ratio 0.1 to determine the fatigue crack growth behavior. These results are completed with crystallographic, microstructural, tensile, and fractographic examinations, and the influence of the microstructure and of the welding process is discussed.  相似文献   

8.
Dissimilar metal welds between ferritic low‐alloy and austenitic stainless steels commonly occur in power plant application. In order to overcome some of the problems encountered here, a trimetallic configuration using an intermediate piece (such as Alloy 800) between the austenitic and ferritic steels has been suggested. This paper describes some features of the joints between modified 9Cr‐1Mo steel and Alloy 800, produced with Inconel 82/182 filler material. The joints require heat‐treatment after welding and the results have shown that a treatment at 760 °C for 2 h would be optimal. Although most tensile failures occurred in the weld metal the welds were found to exhibit strength properties that are at least equal to those of Alloy 800, with a tensile elongation lying between those of the two base materials. Similarly, while the weld metals are slightly less tough than the two base materials, the weld metal toughness at 120 J is still quite adequate for the intended application.  相似文献   

9.
The dynamic testing of high strength automotive steel grades is of great practical importance if their crash‐worthiness is to be evaluated. During forming operations, steels are processed in a controlled dynamic manner. In collisions, the deformation is different in the sense that the deformation is not controlled, i.e. both strain and strain rate are not pre‐determined. No clear standard testing procedures are currently available to test high strength steels dynamically, in order to evaluate their performance during car crashes. High tensile strength TRIP‐aided steels have been developed by the steel industry because of their promising high strain rate performance. The present contribution focuses on the effect of the strain rate and temperature on the mechanical behaviour of the low alloy high strength TRIP steel. The tests were carried out on the separated phases in order to determine their specific high strain rate deformation response. The temperature‐dependence of the transformation rate of the retained austenite is presented. It is argued that the adiabatic conditions present during high strain rate deformations have a beneficial effect on the behaviour of TRIP steel.  相似文献   

10.
Multiphase TRIP steels are a relatively new class of steels exhibiting excellent combinations of strength and cold formability, a fact that renders them particularly attractive for automotive applications. The present work reports models regarding the prediction of the stability of retained austenite, the optimisation of the heat‐treatment stages necessary for austenite stabilization in the microstructure, as well as the mechanical behaviour of these steels under deformation. Austenite stability against mechanically‐induced transformation to martensite depends on chemical composition, austenite particle size, strength of the matrix and stress state. The stability of retained austenite is characterized by the MσS temperature, which can be expressed as a function of the aforementioned parameters by an appropriate model presented in this work. Besides stability, the mechanical behaviour of TRIP steels also depends on the amount of retained austenite present in the microstructure. This amount is determined by the combinations of temperature and temporal duration of the heat‐treatment stages undergone by the steel. Maximum amounts of retained austenite require optimisation of the heat‐treatment conditions. A physical model is presented in this work, which is based on the interactions between bainite and austenite during the heat‐treatment of multiphase TRIP steels, and which allows for the selection of treatment conditions leading to the maximization of retained austenite in the final microstructure. Finally, a constitutive micromechanical model is presented, which describes the mechanical behaviour of multiphase TRIP steels under deformation, taking into account the different plastic behaviour of the individual phases, as well as the evolution of the microstructure itself during plastic deformation. This constitutive micromechanical model is subsequently used for the calculation of forming limit diagrams (FLD) for these complex steels, an issue of great practical importance for the optimisation of stretch‐forming and deep‐drawing operations.  相似文献   

11.
Steels of high mechanical strength combined with high toughness, such as those in quenched and tempered condition are required to reduce weight in industrial machinery. Their mechanical performance is impaired by welding operations which often cause a reduction of toughness and increase the probability for cold cracking due to martensite formation in the weld seam. The limited weldability of high‐strength steels therefore demands appropriate joining procedures to increase their use in industrial construction and reduce reworking costs. Induction heating is capable of directly producing heat inside a work piece. This enables the integration of induction heat‐treatments into serial welding processes. In this work, the effect of induction‐assisted laser welding on the microstructure and residual stresses in S690QL butt joints was investigated. The results reveal that conventional laser welding causes strong martensite formation in the weld seam and the heat‐affected zone. This leads to prohibitive hardness values. Induction heat‐treatments result in an efficient reduction of hardness in the fusion zone. However, the efficiency decreases with increasing sheet thicknesses. The residual stress distributions after laser welding with and without induction heating are typical of fusion welding. Although an effective reduction of hardness is achieved by induction‐assisted laser welding, the residual stresses remain significantly high.  相似文献   

12.
Formable high‐strength low‐alloy TRIP‐aided sheet steels with annealed martensite matrix or TRIP‐aided annealed martensitic steel were developed for automotive applications. The steels possessed a large amount of plate‐like retained austenite along annealed martensite lath boundary, the stability of which against the strain‐induced transformation was higher than that of the conventional TRIP‐aided dual‐phase steel with polygonal ferrite matrix. In a tensile strength range between 600 and 1000 MPa, the TRIP‐aided annealed martensitic steels exhibited superior large elongation and reduction of area. In addition, the steels possessed the same excellent stretch‐flangeability and bendability as TRIP‐aided bainitic steel with bainitic ferrite matrix. These properties were discussed by matrix structure, a strength ratio of second phase to matrix, retained austenite stability, internal stress in matrix and so on.  相似文献   

13.
This paper aims at investigating metallurgical and mechanical characterization of low carbon steel laser spot welds. Microstructural examinations, microhardness tests and quasi‐static tensile‐shear tests were preformed. Mechanical properties of the welds were described in terms of peak load and failure mode. The effects of laser spot welding parameters including pulse frequency, laser energy, welding speed, pulse width and welded circle diameter, on low carbon steel laser spot weld performance were studied using the Taguchi design of experiment method. It was found that the effective laser pulse energy is the controlling factor in the determination of mechanical strength of laser spot welds.  相似文献   

14.
The tensile mechanical performance of different low‐alloy TRIP steels has been evaluated with regard to material design requirements in the automotive industry. Experimental results obtained for variations in chemical composition and for different bainite holding heat treatment conditions in low‐alloy TRIP steels were exploited. Both laboratory scale and commercially produced TRIP steels were investigated. For the evaluation of the mechanical performance, the quality index QD has been introduced. The index QD considers the combination of tensile strength and strain energy density in a single value. Quality characterization and alloy quality ranking were made using the index QD as well as, for comparison, the quality index QB = Rm·Ag, which is currently used by the industry. The results obtained involving the index QD seem to be more realistic, from the viewpoint of automotive design requirements.  相似文献   

15.
TRIP‐aided steels offer an excellent combination of strength and formability, which makes them particularly interesting for use in automotive applications. Recent investigations have shown that while the typical high CMnSi TRIP‐aided steel composition offers good mechanical properties, alloying with other elements or a modification of the processing are required to make this steel readily galvanizable without loss of the TRIP properties. Al‐alloying seems especially promising to realize this goal and P could also be an alternative. Due to the very specific thermal processing needed to obtain a TRIP microstructure, it is important to know the influence of these alloying elements on the re‐austenitization kinetics during the annealing. This paper aims at identifying the differences in the influence of Si, Al and P on the intercritical annealing of TRIP‐aided steels. The equilibrium thermodynamics calculations and diffusion‐controlled transformation simulations were used in order to predict the transformation behaviour, and experimental verification was done based on dilatometric experiments.  相似文献   

16.
The weldability of Zn-coated steel sheets 0.7 mm thick was investigated using resistance spot welding process. The effect of welding current, welding time and holding time on weld nugget characteristics, microstructure, and mechanical properties was discussed. Then, the possibility of replacing this welding process with laser beam welding was outlined. In this respect, quality of weld joints as a function of zinc removal by grinding prior to welding was evaluated. It is found that resistance spot welding current and time are the most significant parameters in affecting both expulsion and Zn-induced porosity. Expulsion was avoided and Zn-induced porosity was reduced with the decrease in welding current and/or welding time. Zn-induced porosity was completely eliminated by zinc-removal by grinding prior to welding. The best weld joint concerning nugget characteristics, soundness and tensile shear strength was obtained using welding current of 10 kA, weld cycle of 20, holding cycle of 18. Unlike resistance spot welds, high quality of CO2 laser welds free from Zn-induced porosity could be made without zinc removal by grinding before welding.  相似文献   

17.
Advanced high strength steel (AHSS) has been widely used in the automobile industry.The resistance spot welding performance of DP980 and Q&P980 steels was studied through comparing the two steels’welding current range,tensile shear strength (TSS),cross tension strength (CTS),weld spots’microhardness,etc.The following conclusions were achieved:It is easy for both DP980 and Q&P980 steels to get a nugget size bigger than 4 mm,they all have welding current ranges exceeding 2 kA and high weld strength.  相似文献   

18.
The possibility of applying new high‐strength steels with excellent forming behaviour (TRIP, TWIP and LIP steels) in automotive manufacturing is a significant potential for improvement in the area of reducing weight while simultaneously increasing crash safety. The present work investigates endogenous inclusions in some high‐alloy TRIP and TWIP steels because the most stringent product requirements are tightly related to cleanness. The expected formation of inclusions is discussed based on thermodynamic observations made with ThermoCalc. The solidification conditions were varied in experiments with the so‐called SSCT (submerged split chill tensile) apparatus. Furthermore, different treatment times were set in order to investigate this influence on the inclusions. A catalogue of endogenous inclusions in these new steel grades is currently being created with the help of the automated SEM/EDX inclusion analysis system at voestalpine Stahl GmbH in Linz. Further studies will follow to systematically determine the interactions between steel, slag and refractory materials.  相似文献   

19.
Ultra‐fine grained ferrite steels have higher strength and better toughness than the normal ferrite steels because of their micrometer or sub‐micrometer sized grains. In this paper the ultra‐fine grained steel SS400 is welded by CO2 laser. The shape of weld, cooling rate of HAZ, width of HAZ, microstructures and mechanical properties of the joint are discussed. Experimental results indicate that laser beam welding can produce weld with a large ratio of depth to width. The cooling rate of HAZ of laser beam welding is fast, the growth of prior austenite grains of HAZ is limited, and the width of weld and HAZ is narrow. The microstructures of weld metal and coarse‐grained HAZ of laser beam welding mainly consist of BL + M (small amount). With proper laser power and welding speed, good comprehensive mechanical properties can be acquired. The toughness of weld metal and coarse‐grained HAZ are higher than that of base metal. There is no softened zone after laser beam welding. The tensile strength of a welded joint is higher than that of base metal. The welded joint has good bending ductility.  相似文献   

20.
Recently various kinds of high-strength sheet steels have been developed to meet the requirements of the automotive industry such as passive safety, weight reduction and saving energy. Usually the main problem of high-strength steels is their inferior ductility. Multiphase steels however show a very good combination of strength and formability so that the applicable region of high-strength steels has been widely enlarged. Multiphase steels have been developed for various purposes because of their ability to tailor properties by adjusting the type, the amount, and the distribution of different phases. Especially new developed triple-phase steels which make use of the TRIP effect (transformation induced plasticity) can further improve formability as well as strength due to the transformation of retained austenite to martensite during the deformation. In this work the transformation behaviour and the mechanical properties of low alloyed TRIP steels were investigated. The influence of the annealing parameters on transformation behaviour and on the amount of retained austenite were determined. In addition the temperature dependence of the mechanical properties and the effect of testing speed on the formability were studied. The investigation was carried out on seven different TRIP steels with different chemical compositions, especially the influence of the microalloying element niobium was considered. For reasons of comparison various mild and high-strength steels were tested parallel to the TRIP steels. It was found that the investigated TRIP steels offer very attractive combinations of elongation and strength values. An interesting temperature dependence of the mechanical properties can be observed, in such a way that the elongation values of the TRIP steels possess a maximum between +50 and +100°C. Due to its effect on grain size and on precipitation behaviour the addition of niobium leads to higher strength values without a strong decrease in ductility. In general, the mechanical properties are strongly affected by the type and the distribution of the different phases. The most important parameters, however, to influence the mechanical behaviour are the amount and the stability of the retained austenite, which are mainly controlled by the heat treatment and the chemical composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号