首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A grain tip (GT) truncation is proposed to truncate grain protrusion tips of #270 diamond grinding wheel in plunge grinding of hard and brittle material. In this study, a 3D laser microscopy was employed to measure the wheel working surface and parameterize its 3D grain protrusion topography. The objective is to investigate how micron-scale grain protrusion parameters influence grinding performance such as grinding force and surface roughness. First, the GT truncation was performed after dressing of diamond grinding wheel in grinding experiment of quartz glass; then its 3D grain protrusion topography was constructed by smoothing 3D measured noise, matching measured point cloud, transferring protrusion frame and extracting 3D diamond grains; finally, the grain protrusion parameters such as grain protrusion number, grain protrusion height, grain protrusion volume, grain rake angle, grain clearance angle, etc. were investigated in connection with ground surface and grinding force. It is shown that GT truncation averagely decreases grain protrusion number, grain protrusion height, grain protrusion volume, grain rake angle and grain clearance angle by about 44%, 74%, 75%, 24% and 70% on whole wheel surface, respectively. However, it greatly increases active grain number by about 32 times and active grain volume by about 181 times in actual grinding with the depth of cut in 1 μm, thus leading to a decrease (about 80%) in surface roughness and an increase (about 40 times) in grinding force. It is also found that truncated diamond grain tips are mostly shaped with nanometer-scale tip wedges along grain cutting direction, leading to about 75% very large negative grain rake angles and about 75% large grain clearance angles, thus contributing to ductile-mode grinding. It is confirmed that the active grain number and active grain volume for the actual depth of cut may be regarded as main grain protrusion parameters to evaluate and predict the precision grinding performance of a coarser diamond grinding wheel.  相似文献   

2.
A coarse diamond grinding wheel is able to perform smooth surface grinding with high and rigid grain protrusion, but it is very difficult to dress it. Hence, the dry electro-contact discharge (ECD) is proposed to dress #46 diamond grinding wheel for dry grinding of carbide alloy. The objective is to understand micro-topographical removals of diamond grain and metal bond for self-optimizing dressing. First, the pulse power and direct-current (DC) power were employed to perform dry ECD dressing in contrast to mechanical dressing; then the micro-topographies of diamond grains and metal bond were recognized and extracted from measured wheel surface, respectively; finally, the relationship between impulse discharge parameters and micro-topographical removals was investigated with regard to grain cutting parameters, dry grinding temperature and ground surface. It is shown that the dry ECD dressing along with spark discharge removal may enhance the dressing efficiency by about 10 times and dressing ratio by about 34 times against the mechanical dressing along with cutting removal. It averagely increases grain protrusion height by 12% and grain top angle by 23%, leading to a decrease 37% in grinding temperature and a decrease 46% in surface roughness. Compared with the DC-25V power along with arc discharges, the Pulse-25V power removes the metal bond at 0.241 mm3/min by utilizing discharge energy by 73% and diamond grain at 0.013 mm3/min through surface graphitization, respectively, leading to high and uniform grain protrusion. It is confirmed that the impulse discharge parameters are likely to control the microscopic grain protrusion topography for efficient dressing according to their relations to the micro-removal of metal bond.  相似文献   

3.
A new graphical evaluation of micron-scale wheel protrusion topography is proposed by using 3D coordinate data derived from contact measuring of 180 diamond grinding wheel. The objective is to quantify 3D distribution of grain protrusion height, gain rake angle and grain relief angle on wheel working surface in dressing. First adaptive measuring was conducted on the base of topographical curvature to identify grain cutting edge in 3D space, second grain protrusion mode was established by polar coordinate transfer so as to ascertain datum plane of grain protrusion, then linear approximation graphics was conducted to display wheel protrusion topography, finally distributions of gain rake angle and grain relief angle were investigated with reference to grain protrusion height. Analytical results show that higher outer grains have more and shaper cutting edges, but lower layer grains retain approximately original crystal forms. In wheel protrusion topography, grain protrusion heights, grain rake angles and grain relief angles are dispersedly distributed in the range 0–28 μm, −45.0° to −89.1° and 1.2–73.1°, respectively, which can be increased by dressing. It is concluded that 3D grain protrusion attitudes distributed on wheel working surface can be quantified by 3D graphical evaluation method.  相似文献   

4.
为了实现粗磨粒金刚石砂轮延性域磨削加工SiC陶瓷材料,采用碟轮对粒径为297~420μm的粗磨粒金刚石砂轮进行了精密修整。然后,使用经过修整好的粗磨粒金刚石砂轮对SiC陶瓷进行磨削加工。在此基础上,对不同的砂轮线速度、工件进给速度、磨削切深对SiC陶瓷表面粗糙度和表面形貌的影响进行了研究。试验结果表明:经过精密修整的粗磨粒金刚石砂轮是能够实现SiC陶瓷材料的延性域磨削的,表面粗糙度值Ra达到0.151μm;随着砂轮线速度增大、工件进给速度和磨削切深减小,SiC陶瓷表面的脆性断裂减小,塑性去除增加。  相似文献   

5.
Demands for high quality surface finish, dimensional and form accuracy are required for optical surfaces and it is very difficult to achieve these using conventional grinding methods. Electrolytic in-process dressing (ELID) grinding is one new and efficient method that uses a metal-bonded diamond grinding wheel in order to achieve a mirror surface finish especially on hard and brittle materials. However, studies reported so for have not explained the fundamental mechanism of ELID grinding and so it has been studied here by conducting experiments to establish optimal grinding parameters to obtain better surface finish under various in-process dressing conditions. In this research the results show that the cutting forces are unstable throughout the grinding process due to the breakage of an insulating layer formed on the surface of the grinding wheel; however, a smoother surface can be obtained using a high dressing current duty ratio at the cost of high tool wear. ELID grinding is efficient for feed rates of less than 400 mm/min, and surface cracks are observed when it exceeds this limit.  相似文献   

6.
This paper introduces a new in-process evaluation method for grit protrusion feature on wheel surface by monitoring discharge current trace during electro-contact discharge (ECD) dressing of metal-bonded fine diamond grinding wheel. First an impulse discharge machining experiment was carried out to investigate the correlation between metal bond removal and discharge parameters, namely discharge current Ie and discharge pulse duration τe. Then ECD dressing experiment for #600 diamond grinding wheel was conduced to analyses the quantitative effect of the discharge parameters (Ie and τe), derived from discharge current trace between wheel and dresser (electrode), on grit protrusion feature of wheel surface. The result shows that the grit protrusion feature is sensitive to the discharge parameters (Ie and τe) with reference to mean diamond grit size dgm. Further, the discharge parameters (Ie and τe) in ECD dressing should conform to the discharge variables’ requirement of , by which the grit protrusion feature may be evaluated and the dressing process variables may be determined. Finally, the in-process evaluation method was successfully applied to ECD dressing of #1500 diamond grinding wheel for valid grinding of hard-brittle materials.  相似文献   

7.
用杯形砂轮修整器整形和修锐结合剂密实型金刚石砂轮时,笔者发现在磨粒后方存在一部分结合剂残留物,并把它称之为结合剂三角洲。本文首先描述结合剂三角洲形成机理及其特性,然后讨论它对砂轮摩削性能的影响。主要结论如下:(1)结合剂三角洲形成在杯形砂轮和金刚石砂轮速度矢量差之方向(修整方向),当修整方向同磨削方向不一致时,它在磨削过程中可能和工件发生接触。(2)用杯形砂轮的两边交替进行修整,不仅可以保证结合剂三角洲的方向同磨削方向一致,并且还可以通过调整金刚石砂轮同杯形砂轮的速度比来控制结合剂三角洲的后背角φ。(3)结合剂三角洲越大,对金刚石磨粒的把持力也越大,使得修整后磨粒突出高度增大。(4)结合剂三角洲纵截面积增大会降低砂轮最外表层上的切削刃密度并使磨削力增加率减小。  相似文献   

8.
单层钎焊金刚石砂轮在制作完成之初由于砂轮基体加工存在误差以及磨粒粒径大小不一等原因造成磨粒等高性不一致,这使其难以在硬脆材料的精密磨削中得到广泛的应用。采用自制的钎焊碟轮对80/100#单层钎焊金刚石砂轮进行了修整试验研究。在修整试验前后跟踪了砂轮磨粒等高性的变化,进行了SiC陶瓷的磨削试验,并观测了工件表面质量的变化情况。试验结果表明:采用此方法能够实现单层钎焊金刚石砂轮的高效精密修整。修整试验结束后砂轮磨粒等高性较好,磨削SiC陶瓷的表面质量得到明显改善,表面粗糙度Ra值达到了0.1μm以下。  相似文献   

9.
金刚石砂轮精密修整工艺研究   总被引:1,自引:0,他引:1  
金刚石砂轮机械磨削是砂轮整形的传统方式。砂轮旋转速度以及工具砂轮的进给量是金刚石砂轮机械精密整形的主要工艺参数。通过在超硬材料砂轮整形机床上的大量实验和砂轮磨削力的分析,得到了金属结合剂和树脂结合剂金刚石砂轮精密整形的比较理想的工艺参数;确定了工具砂轮的线速度应在11 m/s左右,工具砂轮轴转速在1 050~1 800 r/min;金刚石砂轮轴转速设定在400~1 000r/min,金刚石砂轮的线速度为2.6~10.5 m/s。同时,分析比较了机械修锐和喷砂修锐的效果。  相似文献   

10.
杯形砂轮修整碟形金刚石砂轮磨削力研究   总被引:3,自引:0,他引:3  
本文通过对杯形砂轮修整碟形金刚石砂轮的试验,对以研磨为主要因素的修整磨削力进行了研究,从磨削模型、砂轮参数、工艺参数等方面研究了修整时的磨削力规律,并用角正回归法推导了磨削力试验公式。实验结果表明:砂轮变速磨削,径向磨削力降低,切深量对磨削力的影响最大,而低速磨削时磨削力最大。磨削力信号是一种平稳的周期振动信号。角正回归法是一种高精度的回归法。变速磨削时修整效率最佳。  相似文献   

11.
GC杯形砂轮修整碟形金刚石砂轮实验研究   总被引:1,自引:2,他引:1  
本文对GC杯形砂轮修整树脂结合剂碟形金刚石砂轮进行了实验研究,实践了一种新的端面修整方式。实验从磨削几何学的角度研究了杯形砂轮端面修整金刚石砂轮端面的影响,分析了端面磨削时接触弧长的特点;对不同主轴转速、砂轮参数、进给速度几方面做了对比试验,结果表明:GC杯形砂轮对超硬磨料砂轮有良好的修整作用,并以脱落的GC磨粒对结合剂桥的冲击与研磨为主要方式;修整效率决定于GC粒度、主轴转速,在粗粒度、中等转速下修整效率最高,进给速度对修整效率影响不大;在磨削过程中,应根据其他参数的变化调节GC砂轮与金刚石砂轮的中心偏移量H,偏移量小,修整效率高。  相似文献   

12.
迟玉伦  顾佳健 《表面技术》2021,50(3):366-375
目的 通过对轴承套圈表面修整工艺优化的研究,实现对轴承套圈表面优质高效的磨削加工.方法 首先基于金刚滚轮修整原理和力学原理,建立修整过程系统简化模型,根据模型求得系统固有频率,再根据频响函数曲线图确定主轴最佳转速.然后建立砂轮与滚轮的运动轨迹方程,根据方程求得曲率半径,再根据曲率半径求得使砂轮表面粗糙度较低的修整速比.接着引入一个新的物理量干涉角,根据经验确定一个较优的干涉角,将修整速比代入,求得最后的滚轮进给速度.最后通过间接获得的磨削力大小来优化整个修整过程,若磨削力偏大,则重新选择主轴转速.结果 根据该方法得到优化结果,选用砂轮转速为23994 r/min、滚轮转速为5473 r/min、修整进给速度为1.77 mm/min、磨削力为37.2 N时,轴承套圈表面能获得较高的质量.对比优化前后轴承套圈沟形,由优化前的不合格变为优化后的合格,有了显著的改善.结论 将修整参数运用多个方法进行确定,并通过磨削力进行最后的优化.根据加工产品表面呈现出的问题,可以找到对应的参数,进而对参数进行单独优化,为企业优化轴承套圈表面质量提供了一套科学有效的方法.  相似文献   

13.
Dry electro-contact discharge (ECD) dressing of metal-bonded #600 diamond grinding wheel is proposed for grinding of various granites. As compared to mechanical GC dressing, Dry ECD dressing can not only protrude fine diamond grains from wheel metal-bond without any damage, but also eliminate bond-tail behind the protruded grain. The objective is to understand how the synthetic factors including granite structure, grinding parameters and dressing method influence the ground surface integrity of multi-crystal granite such as surface roughness and surface crack appearance in contrast to homogeneous optic glass. First a micron-scale indentation experiment was carried out to display the growth mechanism of micro-cracks on polished surface, then Dry ECD dressing and mechanical GC dressing were carried out in grinding experiment, respectively, finally surface roughness and micro-surface crack were investigated in connection with granite crystal size, work speed and dressing method. It is found that in almost all cases the multi-crystal granite has always worse ground surface than homogeneous optic glass even if grinding parameter is changed. Moreover, the improvement of ground surface for granite is more sensitive to grain protrusion feature than that for optic glass. Although it is very difficult to find out obvious relationship between surface roughness and grinding parameter such as work speed, it has a good correlation with granite structure such as granite crystal size: it decreases with the increase of the granite crystal size. It is concluded that Dry ECD dressing may more greatly improve the ground surface integrity of various granites than mechanical GC dressing.  相似文献   

14.
The preparation of vitrified CBN or diamond wheels by truing and dressing has a large influence on the grinding performance. A worn diamond dresser cannot produce sufficient protrusion of cutting grain edges. To reduce the wear of diamond dressers and hence guarantee a desired wheel surface, a novel truing and dressing method, namely, laser-assisted truing and dressing, is proposed and tested to achieve good dressing quality and efficiency. A systematical experimental feasibility study on this newly proposed laser-assisted truing and dressing technique is conducted by investigating truing efficiency, truing accuracy, dresser wear, dressed wheel profiles, and specific forces in comparison with those of the conventional single diamond methods. Experimental results show that the new laser-assisted truing and dressing technique offers a number of advantages over the conventional single-tip diamond dressing and truing method. In addition, the underlying mechanism of the laser truing and dressing process is investigated through the careful analysis of the properties of chips and the microscopic structural characteristics of wheels.  相似文献   

15.
Fine-grained resin bonded diamond tools are often used for ultra-precision machining of brittle materials to achieve optical surfaces. A well-known drawback is the high tool wear. Therefore, grinding processes need to be developed exhibiting less wear and higher profitability. Consequently, the presented work focuses on conditioning a mono-layered, coarse-grained diamond grinding wheel with a spherical profile and an average grain size of 301 µm by combining a thermo-chemical and a mechanical-abrasive dressing technique. This processing leads to a run-out error of the grinding wheel in a low-micrometer range. Additionally, the thermo-chemical dressing leads to flattened grains, which supports the generation of hydrostatic pressure in the cutting zone and enables ductile-mode grinding of hard and brittle materials. After dressing, the application characteristics of coarse-grained diamond grinding wheels were examined by grinding optical glasses, fused silica and glass–ceramics in two different kinematics, plunge-cut surface grinding and cross grinding. For plunge-cut surface grinding, a critical depth of cut and surface roughness were determined and for cross-grinding experiments the subsurface damage was analyzed additionally. Finally, the identified parameters for ductile-machining with coarse-grained diamond grinding wheels were used for grinding a surface of 2000 mm2 in glass–ceramics.  相似文献   

16.
针对电镀砂轮制造过程中存在的磨粒等高性不好的问题,采用白刚玉油石对其进行修整。通过选择合理的修整参数,使得砂轮和油石的相互作用力控制在一定的范围内,实现突出高度较高,结合强度差的磨粒的去除;而对等高性较好,结合强度较高的磨粒影响不大,从而达到修整的目的。为了对修整效果进行评价,采用激光扫描方法得到修整前后砂轮的地貌,并根据地貌的不同特征分析和验证修整效果,重点关注磨粒出刃高度和等高性。  相似文献   

17.
通过对D,GC杯型砂轮和金刚石微粉烧结棒修整大直径树脂结合剂碟型金刚石砂轮的对比实验,以反映砂轮平面度的周向跳动变化率和径向跳动变化率作为修整效率的评价依据,以被修砂轮加工出硬质合金插齿刀的齿形误差作为修整质量的评价依据,从修整原理及修整模型上分析了影响修整效率和修整质量的主要因素,分析结果表明:被修砂轮金刚石颗粒微切削频率以及修整力方向对修整效率有很大的影响;修整质量与作用在被修砂轮上的修整运动有关,磨削,单用GC杯型砂轮法修整后的碟形金刚石砂轮适合于粗磨和半精磨;D,GC杯型砂轮组合修整法既具有高的修整效率也具有高的修整质量,是一种可广泛应用的修整方法。  相似文献   

18.
A genetic algorithm (GA) based optimization procedure has been developed to optimize grinding conditions, viz. wheel speed, workpiece speed, depth of dressing and lead of dressing, using multi-objective function model with a weighted approach for surface grinding process. The procedure evaluates the production cost and production rate for the optimum grinding condition, subjected to constraints such as thermal damage, wheel wear parameters, machine tool stiffness and surface finish. New GA procedure is illustrated with an example and optimum results such as production cost, surface finish, metal removal rate are compared with quadratic programming techniques.  相似文献   

19.
Experiments of rotary diamond truing and dressing of vitreous bond grinding wheels were conducted to investigate the effects of feed, speed ratio, and overlap ratio on cylindrical grinding of zirconia. The applications of ceramic engine components with complex and precise form and the lack of technology for precision truing of diamond grinding wheels have driven the need to study the use of vitreous bond CBN and SiC wheels for form grinding of ceramics. Truing and grinding forces and the roundness and surface finish of ground zirconia parts were measured. By varying truing process parameters, a wide range of surface finish and roundness could be achieved. Experimental results showed that wheels trued at speed ratio below −1.0 could grind parts with fine surface finish and good roundness. The analysis of truing and grinding results showed the trend of increasing grinding force at higher specific truing energy and better surface finish at higher grinding force. The lack of speed control of the direct–drive, variable–speed truing spindle was observed and its effect on the reverse of direction of truing force at positive speed ratios was studied.  相似文献   

20.
为研究金属结合剂金刚石砂轮切削刃修锐整形对硬脆材料加工表面形态的影响,先通过接触放电法对SD600金属结合剂砂轮切削刃进行修锐,再用整形研磨方法对砂轮表面金刚石磨粒的不同切削刃高度进行整形研磨,最后用修整好的砂轮磨削加工用于光学设备的硼硅玻璃、石英玻璃、石英晶体和蓝宝石等几种硬脆材料。结果表明:硬脆材料粗糙度的改善程度取决于材料的种类,硼硅玻璃、石英玻璃、石英晶体、蓝宝石的最大粗糙度Ry比砂轮整形前的分别减少了44%、34%、30%、26%,且石英晶体材料几乎可以实现延性磨削。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号