首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the entropy generation of a non-Newtonian fluid such as Tho2 inside a circular channel with constant surface temperature has been investigated. The pressure gradient along the pipe line, the difference between the dimensionless inlet wall temperature and fluid temperature and modified Stanton number are the key elements to calculate the entropy generation for three different non-Newtonian fluids. Also the variation of the dimensionless entropy generation and the pumping power to heat transfer rate ratio is calculated for two different cases, the first case involves fixed pipe length and variable inlet temperature and the second case considers fixed fluid inlet temperature and variable pipe length.  相似文献   

2.
The present paper discusses entropy generation in fully developed turbulent flows through a subchannel,arranged in square and triangle arrays. Entropy generation is due to contribution of both heat transfer and pressure drop. Our main objective is to study the effect of key parameters such as spacer grid, fuel rod power distribution,Reynolds number Re, dimensionless heat power ω, lengthto-fuel-diameter ratio λ, and pitch-to-diameter ratio ξ on subchannel entropy generation. The analysis explicitly shows the contribution of heat transfer and pressure drop to the total entropy generation. An analytical formulation is introduced to total entropy generation for situations with uniform and sinusoidal rod power distribution. It is concluded that power distribution affects entropy generation.A smoother power profile leads to less entropy generation.The entropy generation of square rod array bundles is more efficient than that of triangular rod arrays, and spacer grids generate more entropy.  相似文献   

3.
For optimal design of a gas-cooled reactor, pumping power can be improved by flattening the axial temperature distribution of the fuel elements. The optimization of pumping power for a single fuel element with annular passage and uniform heat flux or pseudo-sinusoidal heat flux is examined first. When the dimensionless highest wall temperature θh is given, the optimal dimension of the channel at which pumping power becomes minimum may be obtained. Furthermore, axial temperature distribution of a single fuel element can be flattened by varying the cross-sectional area of the coolant passage. The pumping power can be less than the least pumping power of a straight annulus.  相似文献   

4.
随着分离式热管不断被提出用于核电站非能动余热排出方案中,开展针对大尺度分离式热管的换热性能的实验研究变得日益迫切。为此,本文开展了以R134a为工质的304不锈钢材质的分离式热管传热特性实验研究,获得了热管整体换热性能、蒸发段内部温度分布特性,以及热源温度和冷凝段外风速对热管工作温度、换热量、换热系数和循环流量的影响。热管蒸发段内R134a经历过冷、两相和过热状态,其中两相区域较长,达6.6 m,因而具有较好的换热能力,在所研究的工况下换热量最高达21 kW。参数敏感性分析表明,热源入口温度和冷凝段风速的增大能促进热管的换热性能,特别是热源入口温度的影响更显著。冷凝段风速较小时,其对换热量的影响较为显著,然而随空气速度的增加,影响降低。此外,依据试验数据拟合得到了换热量与冷热源温差的经验关系式,能在工程应用中快速预测热管的性能。  相似文献   

5.
竖直环隙流道内沸腾换热启动时的动态特性   总被引:3,自引:0,他引:3  
孙中宁  杜泽  阎昌琪  李兆俊 《核动力工程》2000,21(4):289-293,303
对常压下竖直环隙流道内沸腾换热启动阶段壁温的瞬态变化特性和流动不稳定性进行了实验研究。结果表明环隙流道壁温变化经历跃升回落、各截面平均温度基本不变和快速和快速升三个阶段,存在强烈的流动不稳定性和壁温波动,并伴随着局部干湿交替现象。产生流动不稳定性的主要原因是流道中间歇生成长聚合汽泡,引起介质的突然加速、停滞或倒流。影响壁温波动的主要因素有环隙宽度、加热热流密度、初始水温、进出口附近大容积液体的过冷  相似文献   

6.
强内热源球床通道单相对流换热特性实验研究   总被引:2,自引:2,他引:0  
球床水冷反应堆的堆芯为球形燃料元件堆积成的多孔通道,具有显著的强化换热作用。球床通道内的孔隙因具有多变性、随机性的特点,换热情况非常复杂,相关研究较少。为了研究含内热源球床通道内的换热特性,本文用直径为8 mm碳钢球堆积形成球床,以蒸馏水为工质,采用电磁感应加热方式对球床进行整体加热,研究球床通道内部的换热特性。通过对实验数据进行分析,得到了球床通道内部的功率分布和换热系数随热流密度、工质Re的变化规律,根据实验数据拟合得到了球床通道内平均换热系数的无量纲准则关联式,拟合结果与实验结果的相对偏差在12%以内,符合良好。  相似文献   

7.
We study a steady laminar 2-D MHD viscous incompressible flow over a permeable flat plate with thermal convective boundary condition and radiation effects. The viscosity and thermal conductivity of fluid are assumed to vary linearly with temperature. Similarity representation of the governing partial differential equations is obtained via group method. Similarity equations are then solved numerically by implicit finite difference technique. Effects of convective heat transfer parameter (b), radiation parameter (R,) magnetic field parameter (M), the thermal conductivity parameter (S), suction parameter (fw), Prandtl number (Pr) and Schmidt number (Sc) on the dimensionless axial velocity, temperature, concentration, wall temperature, the rate of heat transfer and the rate of mass transfer are investigated. Good agreement is found between the numerical results of the present paper with published result for special case.  相似文献   

8.
热管作为一种具有高热导率的传热装置,工作核心在于其内部工作流体的蒸发和冷凝。若热管工作过程中气腔内存在不凝性气体,主流区中蒸气和不凝性气体在对流运动的作用下将一起移动到气-液分界面,不凝性气体的存在阻碍了工作流体在气-液交界面处的正常冷凝。本文基于热阻网络法添加了不凝性气体区域传热模型,研究了不凝性气体对高温锂热管稳态传热特性的影响。结果表明,热管达到稳态时不凝性气体的存在缩短了热管的有效传热长度,破坏了热管的等温性和良好的传热效率。此外随着不凝性气体体积份额的增大,不凝性气体区域温度降低幅度越大;随着热管蒸发段输入功率的增大,热管正常工作区域整体温度越高,相同质量的不凝性气体占据的体积份额越小,热管壁面温度出现明显温度梯度降低的位置随着功率升高而向下游移动。  相似文献   

9.
Dual channel cable-in-conduit conductors (CICCs) used in tokamaks such as International Thermonuclear Experimental Reactor (ITER) consist of annular channel packed with superconducting strands and a clear central channel separated by a spiral from the annular channel. Supercritical helium (SHe) operating at 4.5 K and 0.5 MPa is used for forced convective cooling of CICC. Pressure drop is inevitable in the process of forced convective cooling, leading to the development of velocity gradients and temperature gradients. These velocity gradients and thermal gradients result in entropy generation in CICCs.The present work aims at estimating volumetric rate of entropy generation (EG) in dual channel CICC. Subsequently, entropy generation minimization (EGM) technique is used to find optimum mass flow rate at which volumetric rate of EG is minimum. Pumping power and heat transfer corresponding to minimum rate of EG are also calculated. Computational fluid dynamics (CFD) is used as a tool to estimate EG as the analytical solution for turbulent forced convective flows requires inaccurate simplifications. A three dimensional model of dual channel CICC is developed in GAMBIT-2.1 and solved using a compatible solver FLUENT-6.3.26. The annular region of CICC is assumed to be porous and the central channel is assumed as clear region for EG analysis using CFD. The pressure gradients and heat transfer coefficient estimated from the simulations are validated against relevant experimental results available in the literature. The effect of mass flow rate on volumetric rate of EG in turbulent forced convective flow is studied using CFD.  相似文献   

10.
王畅  高璞珍  许超 《核动力工程》2012,33(4):106-110
对冷却剂平均温度恒定运行模式下矩形窄缝通道内的传热特性进行实验及理论分析。结果表明,在层流区,壁面与流体的传热温差随着雷诺数线性增长,而在紊流区,雷诺数变化对传热温差的影响非常小。通过分析传热机理分别解释了上述现象;出、入口流体温差越大,努赛尔数越小,出、入口流体温差影响换热特性的主要原因是改变了粘性底层中热阻所占的比例。  相似文献   

11.
To study the distribution of the flow and temperature field in a type of hydrodynamic mechanical seal of a nuclear reactor coolant pump, a three-dimensional model of the mechanical seal and the seal chamber is established based on the software Pro/E. The N-S equations and energy equation coupling with the k-ε turbulence model are solved based on ANSYS Fluent. The heat generation between the mechanical seal rings and the heat transfer distribution in the sealing chamber is studied. The fluid flow and temperature field of the mechanical seals is analyzed. The results show that the pressure distribution of the mechanical seals is divided into the high-pressure zone and the low-pressure zone by the sealing end face. The liquid film pressure in the mechanical seal end faces gradually decreases from the outer radius to the inner radius. The highest temperature appears at the sealing face, and the temperature decreases gradually away from the sealing face. The viscous heat in the liquid film is transferred away through the seal rings and the heat convection of the fluid flow in the sealing chamber. The pumping ring of the mechanical seal strengths the heat convection of the end faces.  相似文献   

12.
为研究某型号流体动压型核主泵机械密封流场和温度场的分布规律,使用Pro/E软件建立了机械密封环及密封腔的三维实体模型。采用k-ε湍流模型,基于ANSYS Fluent软件求解了纳维-斯托克斯(N-S)方程和能量方程。研究了密封环生热与密封腔散热的规律。分析了流体流动与温度变化趋势。结果表明:该型核主泵机械密封的压力以密封端面为界,分为高压区和低压区。在密封端面液膜压力由外径到内径逐渐降低。最高温度出现在密封端面处,由密封端面向外温度逐渐降低。液膜粘性剪切热通过密封环的热传导及腔内流体的对流换热作用而带走。机械密封的泵送环强化了端面热量的散失。   相似文献   

13.
含内热源球床通道换热特性实验研究   总被引:1,自引:0,他引:1  
针对含内热源球床通道内的换热情况,采用电磁感应加热方式对由直径为3 mm、8 mm表面氧化不锈钢球组成的球床通道分别加热,研究球床通道内部的换热特性。通过对实验数据对比分析,得到球床通道内的功率分布情况和换热系数随热流密度、颗粒直径、工质Re的变化规律,并根据实验数据拟合得到球床通道平均换热系数的无量纲准则关联式。拟合结果与实验结果误差在15%以内,符合良好。  相似文献   

14.
In the present work, a non-Boussinesq (variable physical properties) integral boundary layer analysis is accomplished. The model analyzes laminar free convection between nuclear fuel plates having large fuel plate length to gap between plate ratio. The coolant channels are undergoing to a uniform, symmetric, heat flux and varying fluid properties. In the present study the flow is assumed to be fully developed. This is a good assumption for channels with large fuel plate length to gap between plate ratios. To describe the velocity and temperature distributions of the coolant the non-Boussinesq approximation is introduced into the integral boundary layer equations of flow between parallel plates. The fuel plate temperature is related to the adjacent coolant fluid temperature by a principle in conduction heat transfer. Fluids considered here are air and water. The obtained results show that the present heat transfer problem encountered in nuclear research reactor such Tehran nuclear research reactor (TRR) is characterized by high temperature ratios and thereby rendering the commonly applied Boussinesq approximation invalid. As a result, the use of the Boussinesq approximation (constant fluid properties) for high temperature ratios is not suggested.  相似文献   

15.
A continuous quest for efficient utilization of energy resources has motivated the researchers to search for optimal design and operating conditions during various energy conversion techniques. These conditions for such systems are often proposed by minimizing the destroyed exergy potential in course of the process. In the present paper a second law analysis is done for a nuclear fuel element inside a concentric annular coolant passage. The entropy generation analysis has been carried out through a conjugate approach, with steady state temperature profiles within the fuel element and a thermodynamic approach within fluid. The effect of solid core heat generation and the temperature gradients inside solid core, fuel-clad gap and cladding are considered as well along with the irreversibilities arising out of fluid flow under turbulent condition. The effect of Reynolds number, duty parameter, diameter ratio, Biot number, dimensionless heat flux and thermal conductivity ratios on overall entropy generation characteristics have been investigated and interpreted physically. The validation of the present calculations was confirmed by best-estimate thermal-hydraulic code RELAP. The new thermodynamic design methodology presented in this paper adheres to the safety limits in temperature. The present analysis can be extended for complex fuel pellet arrangements in subchannel structures by an “equivalent annulus model”.  相似文献   

16.
The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates.The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.  相似文献   

17.
高温热管运行特性的分析与预测,对热管设计和应用具有重要意义。为分析高温热管内两相流动传热特性,首先建立钠热管的计算流体力学(CFD)分析模型,并对模型计算值与钠热管稳态实验数据进行对比校核,模拟结果与实验测点温度的绝对误差小于40℃,相对误差在5%以内;其次,利用本文模型与方法对不同传热功率和倾角下的热管内部流场特性进行分析研究。研究表明,均匀加热条件下,蒸气腔内的速度在蒸发段接近线性变化,而在冷凝段,气体流速减小致使压强回升,同时,蒸气的流动压降和速度随加热功率增加呈下降趋势;在热管水平和倾角运行工况,热管内两相流动压降中液相压降均占主导;而气液间剪切效应中,气体流动速度为主导效应。本文模型可为热管堆等高温热管应用领域提供热管设计与分析方法。   相似文献   

18.
为研究窄矩形通道内CaSO4溶液由于析晶沉积产生的污垢及对换热的影响,本研究基于合理的污垢沉积、污垢剥蚀与污垢热阻模型,利用FLUENT软件结合用户自定义函数(UDF)对一定热流密度、入口流速、入口温度和流体浓度的流体进行了析晶沉积模拟计算。研究结果表明了此工质的污垢产生情况和对换热的影响,同时得到热流密度、入口流速和流体浓度3种影响因素对污垢沉积的影响:污垢热阻随热流密度增大而增大,随入口流速增大而减小,随流体浓度增大而增大。本研究可用于模拟板状燃料元件窄矩形通道由于析晶导致的污垢沉积过程。  相似文献   

19.
The Next Generation Nuclear Plant, with emphasis on production of both electricity and hydrogen, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 850-950 °C. In this concept, an intermediate heat exchanger is used to transfer the heat from primary helium from the core to the secondary fluid, which can be helium, a nitrogen/helium mixture, or a molten salt. This paper assesses the issues pertaining to shell-and-tube and compact heat exchangers. A detailed thermal-hydraulic analysis was performed to calculate heat transfer, temperature distribution, and pressure drop inside both printed circuit and shell-and-tube heat exchangers. The analysis included evaluation of the role of key process parameters, geometrical factors in heat exchanger designs, and material properties of structural alloys. Calculations were performed for helium-to-helium, helium-to-helium/nitrogen, and helium-to-salt heat exchangers.  相似文献   

20.
对超临界压力水在管径为32 mm 3 mm、长度为8 m的水平光管内的流动和传热特性进行数值模拟研究。探讨不同压力、流量、热负荷下管内换热系数的变化特征;重点分析超临界水的交混特性,对比分析流动通道内二次流动的特性及演变规律,进而对二次流动的变化规律给出合理的解释;利用无量纲的Gr/Re2和Gr/Re2.7对交混特性中自然对流与强制对流的相对大小进行定量描述,以解释超临界水在水平管内的流动与换热特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号