首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
In the present work the effect of steel fiber hybridization on the mechanical and rheological behavior of self-consolidating concretes was studied. Straight and hooked end steel fibers with different lengths and diameters were used as reinforcement in fiber volume fractions of 1.0% and 1.5%. The viscosity and shear yield stress of the concretes was determined using a parallel plate rheometer. The mechanical behavior was determined by means of compression, tension and bending tests. The movement of the neutral axis under bending load was experimentally determined by strain-gages attached to compression and tensile surfaces. The mechanical response of the material under bi-axial bending was addressed using the round panel test in three different boundary conditions. The obtained results indicated that the fiber hybridization improved the behavior of the composites for low strain and displacement levels increasing the serviceability limit state of the same through the control of the crack width.  相似文献   

2.
The paper presents an experimental and theoretical study on the cracking behaviour of concrete beams having longitudinal tension reinforcement and various combinations of volume and aspect ratio of steel fibers. Five full-scale beams with a concrete compressive strength of 42 MPa were tested. The mechanical properties of the steel fiber concrete under tension were determined by means of the four-point bending test specified in the Belgian standard NBN B15-238. The experimental results show that the addition of steel fibers decreases both the crack spacing and the crack width. A modification of the model of Nemegeeret al. to predict crack widths is suggested.  相似文献   

3.
伍凯  刘晓艺  陈峰  林诗琪  徐超 《工程力学》2021,38(2):110-121
为了解决型钢混凝土结构中型钢与钢筋相互干扰、混凝土浇筑困难等施工难题,将型钢混凝土结构中的钢筋笼完全或部分替换成钢纤维,形成了型钢-钢纤维混凝土组合结构。完成了36个试件的推出试验和13个试件的四点弯试验,分别研究了型钢-钢纤维混凝土组合结构在轴心力与弯矩作用下的界面失效,分析了不同荷载条件下的内力传递与破坏机理。钢纤维在混凝土裂缝处的拉拔行为形成了“桥接”效应,约束了裂缝扩展,改善混凝土裂后的抗拉性能,可以解决因保护层减小而导致的型钢与钢纤维混凝土界面黏结性能变差的问题,延缓甚至避免界面黏结失效的发生。轴心力作用下,因泊松比产生了型钢与钢纤维混凝土之间的界面挤压,钢纤维混凝土在两个正交水平方向承受拉力,这是钢纤维混凝土损伤与开裂的主要原因。钢纤维混凝土的损伤程度与界面的黏结性能有直接的关系,同时受到钢材泊松比的影响。在四点弯试验中,黏结裂缝集中出现在仅承受弯矩的跨中区域,型钢与钢纤维混凝土之间的内力传递以及由此产生的界面拉应力是导致黏结裂缝大量出现的根本原因。黏结裂缝首先出现在钢翼缘的肢尖位置,并随着荷载的增大由内向外发展,直至发展到表面,形成可视裂缝。跨中区域最终形成了钢纤维混凝土保护层梯形破坏面。  相似文献   

4.
In the present study, Mode-I fracture tests of hybrid fiber reinforced concrete (HFRC) composite beams were conducted and the fracture properties and other post peak strength characteristics of the HFRC composites were evaluated and analyzed. The HFRC composite was produced using three types of fibers namely steel, Kevlar and polypropylene. A total of 27 HFRC composite beam specimens were cast and tested using the RILEM recommended three point bending test. The main variables were the fiber volume content and combinations of different fibers. The load versus crack mouth opening displacement (CMOD) curves of HFRC composite beams were obtained. Inverse analysis was carried out to determine the tensile strength and crack opening relationship. Analytical models based on comprehensive reinforcing index were developed for determining the influence of the fibers on fracture energy, flexural tensile strength, equivalent tensile strengths and residual tensile strengths of HFRC composites. Based on the experimental results and inverse analysis, a model for predicting the tensile softening diagram of HFRC composite mixes was also developed. The analytical models show conformity with the experimental results.  相似文献   

5.
Utilisation of steel fibre reinforced concrete (SFRC) for designing structural members requires knowledge of the post-cracking tensile response. This paper reviews the experimental characterisation tests and subsequent analysis commonly used for determining the post-cracking tensile properties of SFRC. The experimental program supporting this investigation comprised five different SFRC mixes with fibre volumes ranging from 0.75 to 1.25% used to fabricate a set of characterisation specimens for uniaxial tension tests, notched beam tests and round panel tests carried out in parallel with an extensive experimental program on large scale beams. Characterisation test results allowed a comparison between direct stress–crack opening measurements and the stress–crack openings retrieved from the inverse analysis of bending tests. Discrepancies in post-cracking tensile results obtained with the three types of tests are analyzed and related mainly to test configurations, the presence of a predefined crack, support conditions, fibre orientation, and cracked surface size. Results obtained using material characterisations are then applied to the reproduction of the structural behaviour of large scale beams, documented in a companion paper.  相似文献   

6.
The shear-flexure response of steel fiber reinforced concrete (SFRC) beams was investigated.Thirty-six reinforced concrete beams with and without conventional shear reinforcement (stirrups) were tested under a four-point bending configuration to study the effectiveness of steel fibers on shear and flexural strengths, failure mechanisms, crack control, and ductility.The major factors considered were compressive strength (normal strength and high strength concrete up to 100 MPa), shear span-effective depth ratio (a/d = 1.5, 2.5, 3.5), and web reinforcement (none, stirrups and/or steel fibers).The response of RC beams was evaluated based on the results of crack patterns, load at first cracking, ultimate shear capacity, and failure modes.The experimental evidence showed that the addition of steel fibers improves the mechanical response, i.e., flexural and shear strengths and the ductility of the flexural members.Finally, the most recent code-based shear resistance predictions for SFRC beams were considered to discuss their reliability with respect to the experimental findings. The crack pattern predictions are also reviewed based on the major factors that affect the results.  相似文献   

7.
曾伟  丁一宁 《复合材料学报》2020,37(9):2303-2313
为了研究结构型聚丙烯纤维、结构型钢纤维及混杂纤维(包括结构型聚丙烯纤维和结构型钢纤维)对混凝土弯曲韧性及裂缝表面形态的影响,参照RILEM TC 162-TDF[10]标准进行混凝土开口梁的三点弯曲试验。利用激光扫描仪对每个试件裂缝表面形态进行信息采集。基于裂缝表面信息,计算了四种裂缝表面粗糙程度参数(即裂缝粗糙度(RN)、分形维数(D)、z坐标正态分布的标准差(σz)和裂缝曲折度(τ)),并比较分析了裂缝表面粗糙程度参数与弯曲韧性参数之间的相关性。研究表明:随着纤维掺量的增多,混凝土弯曲韧性和裂缝表面粗糙程度均随之增大。与结构型聚丙烯纤维和结构型钢纤维相比,混杂纤维在提高混凝土弯曲韧性和增大混凝土裂缝表面粗糙度方面均展现出正混杂效应。与分形维数D、z坐标正态分布标准差σz和裂缝曲折度τ相比,裂缝粗糙度RN与纤维增强混凝土梁弯曲韧性参数的相关性最为显著,且存在指数函数关系。基于该函数关系,可借助纤维增强混凝土梁的弯曲试验快速估测裂缝表面的粗糙程度。   相似文献   

8.
顶管施工中钢筋/混凝土管节存在开裂现象,严重影响工程质量与后续营运。鉴于聚丙烯纤维具有改善混凝土抗拉、抗裂性能的作用,本文采用2种聚丙烯细纤维和1种聚丙烯粗纤维,设计了无纤维、单掺粗纤维及混掺三种尺度纤维的3组钢筋/混凝土管试件,进行了三点试验,对比分析管节的开裂破坏形态、荷载挠度曲线和开裂延性指标。并建立纤维混凝土管节三点试验的有限元模型,进一步探究聚丙烯纤维掺量对钢筋/混凝土管节受力性能的影响规律。结果表明,聚丙烯粗纤维可提高混凝土管的抗裂与承载能力,聚丙烯粗、细纤维的协同作用使管达到更高的使用和极限强度。相比无纤维管,混掺多尺度纤维提升管的使用强度和极限强度分别为28.7%和36.4%。此外,数值模拟合理地预测了纤维/混凝土管节的荷载挠度响应,并针对混凝土管节的极限强度值,得到单掺和混掺聚丙烯纤维时粗纤维的最佳掺量。   相似文献   

9.
There are only a few research results for predicting the relationship between deflection and the crack mouth opening displacement (CMOD) of self-compacting concrete (SCC) beams with and without fibers. A series of bending beam tests on SCC, with different fiber types have been carried out. For this purpose, four SCC mixes—plain SCC, steel, polypropylene, and hybrid fiber reinforced SCC—are considered in the test program. Based on the experimental results, a model for predicting the relation between the deflection and CMOD of SCC has been established per each mix. These models rely on the load–deflection relation and the load–CMOD relation of bending beam. A well agreement has been found between the suggested model and the test results. The results of this study indicate that the load–deflection diagram is very similar to that of the load–CMOD diagram, and there is a linear relation between the mid-span deflection and CMOD of SCC.  相似文献   

10.
In this paper, an analytical method for the prediction of maximum crack width in reinforced steel fiber concrete (SFC) beams under short-term loading is first presented. The method accounts for the enhanced cracking strength, restraint against crack growth, and reduced tensile steel strains due to the presence of steel fibers. Based on a correlation analysis, a semiempirical formula for the long-term crack widths in reinforced SFC beams under sustained loads is also proposed. Tests were carried out on 10 beams to investigate the effect of steel fiber content on the cracking characteristics in both the short- and long-term. The results indicated that the use of steel fibers greatly reduced the maximum crack widths in reinforced concrete beams. Good agreement was generally obtained between the analytical predictions and test results.  相似文献   

11.
Tension stiffening is still a matter of discussion into the scientific community; the study of this phenomenon is even more relevant in structural members where the total reinforcement consists of a proper combination of traditional rebars and steel fibers. In fact, fiber reinforced concrete is now a worldwide-used material characterized by an enhanced behavior at ultimate limit states as well as at serviceability limit states, thanks to its ability in providing a better crack control.This paper aims at investigating tension stiffening by discussing pure-tension tests on reinforced concrete prisms having different sizes, reinforcement ratios, amount of steel fibers and concrete strength. The latter two parameters are deeply studied in order to determine the influence of fibers on crack patterns as well as the significant effect of the concrete strength; both parameters determine narrower cracks characterized by a smaller crack width.  相似文献   

12.
It is now universally recognized that the mechanical, cracking and fracture, properties of Steel Fibre Reinforced Concrete (SFRC) are far superior to those of plain concrete. The use of SFRC contributes effectively to preserve the structural stability and structural integrity of concrete elements and improve their ductile behaviour.To optimize the performance of SFRC in structural members it is necessary to establish the mechanical properties very precisely. The best test methodology to evaluate the post-cracking and toughness properties of SFRC is the beam bending test. Design codes recommend one of two bending test configurations: the three-point or the four-point bending test. The results obtained from these two test configurations are not identical.The overall focus of this paper is to evaluate the contributions of fibres to the post-cracking and fracture behaviour of concrete as determined by the two different standard test procedures. To achieve these aims plain and fibre concrete specimens were tested. All the test specimens were extensively instrumented to establish the strength properties, crack tip and crack mouth opening displacement, post-cracking and fracture behaviour. The results of the two types of bending tests were then critically analysed and evaluated to identify the differing effects of the bending load configurations on material and structural behaviour.SFRC specimens subjected to four-point bending test showed higher stress values compared to those obtained from the three-point bending tests. The first crack strength values evaluated following the two standards are close with an improvement of 10% for the European standard.  相似文献   

13.
The main objective of the research reported here was to develop a new hybrid glulam panel that improves the performance of timber structures and optimises the use of wood in such structures. The hybrid panel is produced by combining glulam with short ultra-high-performance fibre-reinforced concrete (UHPC-SFR) planks with or without internal steel or fibre-reinforced polymer (FRP) reinforcement bars. This study presents an experimental programme of tests performed on seven large-scale hybrid panels under four-point bending. The results show that by combining wood and UHPC-SFR, a hybrid panel is obtained with greater bending stiffness and an increased ultimate load capacity. To detail the failure modes and better understand the mechanical behaviour of this hybrid panel, FEM modelling was performed. The results show that it is possible to accurately model bending behaviour and determine the distribution of stress in composite sections.  相似文献   

14.
The strength and ductility of slurry infiltrated mat concrete (SIMCON) tension members were investigated both experimentally and analytically to construct a mechanical model for simulating tensile force–displacement relationships. In addition to standard strength testing, special tests were conducted on tension specimens with preset cracks to determine the interaction between steel fibers and the cement matrix near an opening crack. These tests were conducted on two sets of preset-crack specimens: (i) with symmetrically inclined fibers and (ii) with aligned fibers having variable debonded lengths on each side of the crack. Using measured bridging forces of inclined fibers, an efficiency factor of plane random fibers, compared to aligned fibers, was determined to be approximately 0.58. It was found that the ductility of SIMCON mainly stems from plastic deformation of steel fibers rather than fiber pull-out. SIMCON tensile response was characterized by elastic, nonlinear hardening and softening regimes. The hardening response was notch insensitive without multiple crack formation. In the elastic regime, only minute stiffness reduction was observed. The nonlinear hardening regime was characterized by internal damage growth without visible crack formation and ended with the appearance of a co-linear set of partial cracks. The softening regime was described by a localized failure of fibers with variable failure strains at the co-linear cracks. Based upon the experimental observation that a co-linear set of partial cracks form at the ultimate composite stress, upper and lower bounds of the SIMCON stress–strain relation in the hardening regimes were obtained.  相似文献   

15.
为解决我国型钢混凝土桁架转换层拉杆及低层角柱在正常使用阶段易出现大面积拉裂缝的问题,以轻质高强、防腐的碳纤维增强树脂复合材料(CFRP)筋为预应力筋,提出可有效控制裂缝的预应力CFRP筋-型钢混凝土结构体系,并对其偏心受拉作用下的抗裂性能进行系统研究。以预应力水平、偏心距、纵筋直径及型钢翼缘厚度为主要参数制作11个构件,通过自行研发的拉-压转换桁架实现偏拉加载。结果表明:引入CFRP筋后CFRP筋-型钢混凝土构件抗裂度大幅提升,相较于普通偏拉构件,预应力大偏拉构件开裂荷载提高了64.8%~102.3%,预应力小偏拉构件提高了61.7%~117%,其抗裂性能与预应力水平、纵筋直径和型钢翼缘厚度正相关,与偏心距负相关。参照组合结构设计规范,提出构件开裂阶段中和轴的三种位置分布,并推导出开裂荷载公式,与试验值比较吻合度较高,可为其他复合材料筋在预应力偏拉体系的应用提供参考。   相似文献   

16.
Concrete is now universally recognized a construction material vital and essential for the regeneration and rehabilitation of the infrastructure of a country. The last few decades have now shown that high strength concrete, with a compressive strength of 100–120 MPa can be readily designed and manufactured. There have also been several advances made in the development of fiber reinforced concrete to control cracking and crack propagation in plain concrete, and to increase the overall ductility of the material. However, there are now many types of fibers with different material and geometric properties, and the exact fracture behavior of fiber reinforced concrete materials is not clearly understood. The overall aim of this paper is to establish the fracture properties and fracture behavior of concrete containing two widely used types of fibers, namely, steel (high modulus) and polypropylene (low modulus). The experimental investigation consisted of tests on cubes and notched prismatic specimens made from plain concrete and fiber concrete with 1% and 2% of steel or polypropylene fibers. The cube tests and the three point bending tests on notched specimens were carried out according to RILEM specifications, and extensive data on their compressive and flexural tensile behavior and fracture energy were recorded and analyzed. The results obtained from the tests are critically assessed, and it is shown that fibers contribute immensely to the structural integrity and structural stability of concrete elements and thereby improve their durable service life.  相似文献   

17.
When steel bars are placed in a concrete structure, the evaluation of crack width and crack spacing is generally required in the serviceability stage. According to more or less aggressive conditions, crack width shall be limited in order to avoid, for instance, the corrosion of steel reinforcement. The presence of fibers in the concrete cast may help to achieve this goal, since fibers remarkably increase the bridging actions across a crack. However, new mechanical models are needed to evaluate these effects, which are generally neglected by classical approaches. Code requirements are based on semi-empirical formulae, in which the average structural performances are analyzed by referring to a single cross-section, instead of a wide portion of an R/FRC or RC element in bending. To evaluate crack patterns more accurately, a suitable block model is therefore introduced in this paper. With the new approach, the bridging effects of fibers, as well as the bond-slip mechanism between steel bars and FRC in tension, are taken into account. By means of such model, it is possible ble to predict at one time the values of crack width, crack spacing, and crack depth, and compare them to data obtained by bending tests on concrete beams. Moreover, to evaluate the possible crack patterns in R/FRC tunnel linings, the proposed block model has been extended to the serviceability stage of massive structures subjected to combined compressive and bending actions. This paper follows a previous work by the same authors (Chiaia et al. Mater Struct 40(6):593–694, 2007) and completes the design procedures for FRC cast-in-place tunnel linings.  相似文献   

18.
在混凝土中添加随机分布的钢纤维能有效提高混凝土力学性能。为了更好地考虑纤维对单向受拉状态下钢纤维混凝土(SFRC)的增强作用,提出一个钢纤维混凝土的弥散开裂本构模型。在弹性阶段,纤维混凝土被视为简单复合材料,基于两相复合材料理论,对SFRC的弹性刚度矩阵进行修正;在受拉开裂后,混凝土的塑性变形量被视为纤维与混凝土界面脱粘过程中滑移量,利用粘结滑移模型计算纤维在混凝土开裂面上的桥接作用。该文通过有限元软件ABAQUS中子程序二次开发接口Umat,进行Fortran编程,在ABAQUS中实现该本构模型。通过数值模拟结果与受拉实验数据进行对比,验证了该本构模型的准确性。通过数值模拟分析,进一步探究钢纤维混凝土相关参数对抗拉性能的影响,为钢纤维混凝土在实际的工程中的应用提供建议。  相似文献   

19.
The use of short fibers inside concrete matrix is an effective method for reducing the vulnerability of concrete constructions subjected to harsh environment. The action of the short fibers in reducing the crack opening is the main issue that needs a research effort in order to optimize the expected results. At the moment the analytical prediction of the crack width and spacing in fiber reinforced concrete (FRC) structural elements under bending loads is still an open problem. A crack width relationship for FRC/RC elements similar to those developed for plain concrete structural members would be desirable for designers and engineers involved in the design of FRC structural elements. The recent development of important technical design codes, such as RILEM TC 162 TDF and the new Model Code (MC) 2010, embrace this idea. However further validation of these models by experimental results is still needed. On the other hand the study of the influence of a sustained load on crack width in presence of a short fibers reinforcement is a topic almost unexplored and important at the same time. In this research the cracking behaviour of full-scale concrete beams reinforced with both traditional steel bars and short fibers has been analyzed under short and long term bending condition. A theoretical prediction of crack width and crack spacing was carried out according to international design provisions based on different analytical models. The theoretical results are discussed and compared in order to highlight the differences between the available models and to check the reliability of the theoretical predictions on the basis of the experimental data. A modified relationship to take into account of the presence of stirrups has been proposed on the basis of experimental results; furthermore, some critical aspects, such as the influence of the type of fibers and the effect of loading-time, have been underlined that should be addressed in future research work.  相似文献   

20.
为了提高高强混凝土剪力墙的抗震性能,在其潜在塑性铰区采用纤维增强混凝土代替高强混凝土,设计了4片剪跨比为2.1的剪力墙试件,进行了拟静力试验。通过改变纤维增强混凝土区高度、轴压比、纵筋数量、箍筋配箍特征值和水平分布筋数量,研究这种剪力墙的抗震性能。结果表明:这种剪力墙试件的抗损伤能力明显改善;纤维增强混凝土区高度对其变形能力有明显影响;开裂荷载和开裂位移显著提高。根据试验结果,分析了这种剪力墙试件的开裂位移、屈服位移和极限位移,给出了考虑剪切、弯曲变形影响的开裂位移、屈服位移和极限位移的计算公式,公式的预测值与试验值吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号