where W is the wear volume (depth), K the wear coefficient, P the contact pressure, S the slippage.And then the stress intensity factor for cracking due to fretting fatigue was calculated by using contact pressure and frictional stress distributions, which were analyzed by the finite element method. The SN curves of fretting fatigue were predicted by using the relationship between the calculated stress intensity factor range (ΔK) with the threshold stress intensity factor range (ΔKth) and the crack propagation rate (da/dN) obtained using CT specimens of the material. And then fretting fatigue tests were conducted on Ni–Cr–Mo–V steel specimens. The SN curves of our experimental results were in good agreement with the analytical results obtained by considering fretting wear process. Using these estimation methods we can explain many fretting troubles in industrial fields.  相似文献   

13.
Viscosity–temperature correlation for liquids     
Christopher J. Seeton 《Tribology Letters》2006,22(1):67-78
A new viscosity–temperature equation and corresponding chart have been developed to extend the range of the current ASTM viscosity–temperature charts. This new chart and equation extends the temperature and viscosity range for hydrocarbons and, for the first time, has the ability to extend to the low viscosity regime of halocarbons and low temperature fluids. The new equation and chart can linearize liquid viscosity data from 0.04 cSt and covers the temperature range from −210 to 500 °C for halocarbons and hydrocarbons. With a modification to the temperature scaling, the new equation also has the ability to fit liquid metal viscosity data. The new chart and equation cannot accurately linearize the viscosity with respect to temperature of fluids exhibiting strong molecular bonding (water, ammonia), fluids whose molecular structure consists of long coils (some long chained silicones), or fluid mixtures in which one fluid precipitates out of solution (wax precipitation).
  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In general polymers are used in the form of composites (fiber reinforced, solid lubricated or both) in tribo-applications, where they may encounter more than one type of wear situations or mechanisms to different extents. The area of investigating the optimum concentration of fillers for best combination of tribo-performance in different wear modes and mechanical strength is sparingly researched. In this paper, research findings on the influence of the contents of short carbon fibers (CF) and PTFE (particulate form) in Polyamide (PA) 12 on friction and wear behavior in two wear modes (adhesive and fretting) have been reported. With increase in contents of CF up to 30% (vol) most of the mechanical properties and tribo-performance improved in adhesive and fretting wear modes. With a view to enhance it further, PTFE was added step by step in the best performing composite (PA+30% CF). This boosted the tribo-performance further, however, at the cost of strength properties. With increase in PTFE percentage (10, 15 and 20% by vol), specific wear rate (K o) and friction coefficient (μ) both decreased appreciably in adhesive as well as fretting wear modes. The composite consisting of 30% CF and 20% PTFE showed lowest values for μ and K o rendering it the best tribo-combination for all practical purposes. The abrasive wear behavior of composites was also investigated. However, wear performance in this mode showed exactly opposite trends. Inclusion of fibers or combination of fibers and PTFE proved detrimental.
J. BijweEmail:
  相似文献   

2.
《Wear》2007,262(5-6):727-735
Three composites were fabricated based on Polyetherimide (PEI) matrix and carbon fabric (CF) (55 vol.%) of different weaves, viz. plain, twill and satin (4H) by impregnation technique. These composites were evaluated for various mechanical properties and tribological performance in low amplitude oscillating wear (LAOW)/fretting wear mode. It was observed that CF reinforcement led to a significant enhancement in all strength and modulus properties of PEI except elongation to break (e). Twill weave proved to be the most effective followed by satin and plain weave in almost all the properties. The LAOW mode evaluation under various loads revealed that the wear performance order was exactly opposite to the above trend. Overall, plain weave composite was the best performer followed by twill and satin. Various wear mechanisms, such as fiber-matrix debonding due to repetitive reciprocating shearing stresses, micro-cracking, micro-cutting and pulverization of fibers followed by removal of debris from the contact zone were operative during such wear situation. Amongst these processes, generation of fiber debris, their temporary retention in fabric weaves and subsequent removal from the crater played a key role in overall wear performance. The ability of plain weave to hold back the debris was maximum that resulted in lowest wear while satin weave had the minimum retention ability that led to the highest wear. The proposed wear mechanisms were supported by SEM studies.  相似文献   

3.
Three composites of Polyetherimide (PEI) reinforced with carbon fabric (CF) of three weaves viz. plain, twill and satin-4 H were developed keeping the amount of fabric constant (55% by vol.). Studies on mechanical properties confirmed that the twill weave composite (T) showed the highest strength, modulus (both tensile and flexural) and interlaminar shear strength (ILSS) followed by satin (S) and plain weave (P) composites. The performance order, however, was reverse in the case of toughness and elongation to break. Specific wear rate in a single-pass, unidirectional and un-lubricated abrasive wear mode against SiC paper showed strong influence of weave in mild wear condition (load 10 N). Composite S showed the highest wear resistance (W R) followed by composites T and P. With increase in load, the difference in performance diminished to the extent that at 40 N, it was almost similar for all the three composites. This was correlated with the difference in the length of the fibers between crossover points which, in turn, allowed the microdisplacement of fibers in the composites during abrasion. This was supported by the SEM.
J. BijweEmail:
  相似文献   

4.
Interfacial adhesion between matrix and fiber plays a crucial role in controlling performance properties of composites. Carbon fibers have major constraint of chemical inertness and hence limited adhesion with the matrix. Surface treatment of fibers is the best solution of the problem. In this work, cold remote nitrogen oxygen plasma (CRNOP) was used for surface treatment. Twill weave carbon fabric (CF) (55–58 vol%) was used with and without plasma treatment with varying content of oxygen (0–1%) in nitrogen plasma to develop composites with Polyetherimide (PEI) matrix. The composites were developed by compression molding and assessed for mechanical and tribological (abrasive wear mode) properties. Improvement in tensile strength, flexural strength, and interlaminar shear strength (ILSS) was observed in composites due to treatment. Similarly, improvement in wear resistance (W R) and reduction in friction coefficient (μ) were observed in treated fabric composites when slid against silicon carbide (SiC) abrasive paper under varying loads. A correlation between wear resistance and tensile strength was slightly better than that in Lancaster–Ratner plot indicating that ultimate tensile strength (S) and elongation to break (e) were contributing to control the W R of the composites. It was concluded that enhanced adhesion of fibers with matrix was responsible for improvement in performance properties of composites, as evident from SEM, Fourier Transform Infrared spectroscopy-Attenuated Total Reflectance (FTIR-ATR) technique.  相似文献   

5.
Dry abrasive wear performance of five plain weave carbon fabric (CF) reinforced Polyetherimide (PEI) composites, developed with increasing CF contents (in the step of 10 vol%) is reported in this paper. It was observed that composite reinforced with 65 vol% CF (IP65) exhibited the best tensile and shear strength and closely followed the leader (IP75) in flexural strength. IP65 when abraded against silicon carbide paper showed highest wear resistance (WR) and lowest friction coefficient (μ) among all composites. The composites IP85 and IP40 containing highest and lowest amount of CF respectively showed least enhancement in strength properties and poorest wear performance. Parallel studies on the influence of fabric orientation with respect to the sliding plane and direction, on WR showed that when CF was oriented parallel to the sliding plane, it had poorest wear resistance. The performance improved for the composites when fabric was oriented normal to the plane. The parallel or anti-parallel orientation of warp or weft fibers with respect to sliding direction showed marginal changes in friction and wear performance. Wear mechanisms were suggested and strongly supported by worn surface analysis using SEM.Efforts were also done to investigate the wear-property correlation. It was observed that the WR was directly proportional to the product of interlaminar shear strength (Is) and elastic modulus (E). Fairly good linearity was shown for specific wear rate (K0) as a function of factor (μP/IsE) where μ is coefficient of friction and P is the normal pressure (N/mm2).  相似文献   

6.
《Wear》2007,262(5-6):749-758
Polyacrylonitrile (PAN) based high strength carbon fabric (plain weave) reinforced polyetherimide (PEI) composites were fabricated using impregnation technique by selecting five different contents of carbon fabric, viz. 85, 75, 65, 55 and 40 vol.%. These bidirectional (BD) composites were evaluated for their mechanical strength as well as tribological behavior in adhesive wear mode. Dry adhesive wear studies were conducted on a custom designed wear tester in which high PV conditions can be simulated. Tests were conducted at various operating parameters such as load, temperature and orientation of fabric with respect to the sliding plane. Two important results were observed; firstly the moderate CF contents (75, 65 and 55 vol.%) proved to be the most effective in manifold increase in mechanical strength of PEI and secondly, the composites with fabric in the direction normal to sliding plane led to very high coefficient of friction (μ). When fabric was parallel to the sliding plane, significant improvement in the tribo-properties of PEI in terms of very high tribo-utility (up to 600 N), appreciably low μ and enhanced wear resistance (WR) (in the range of 10−16 m3/N m) was achieved. The extent of improvement, however, strongly depended on the operating parameters and fabric content. A fairly good correlation was obtained between WR and combination of mechanical properties such as ultimate tensile strength (S), and interlaminar shear strength (ILSS). Wear mechanism studies by SEM supported the observed wear performance of composites.  相似文献   

7.
Polyethersulfone (PES) composites were developed with carbon fabric (CF). Cold remote nitrogen oxygen plasma (CRNOP) treatment was employed to the CF to incorporate functional groups and promote fiber–matrix adhesion. This study includes the effect of PES melt flow index (MFI) on the wettability of CF and its influence on fretting wear performance. Evaluations of fretting wear properties of composites led to the conclusion that the CRNOP treatment proved beneficial to enhance performance properties significantly. Polymer MFI and treatment to CF proved to be the decisive parameters for controlling performance of composites apart from operating parameters. Perforations on the treated carbon fiber, evidently observed by FESEM, improved the fiber–matrix adhesion, and hence the performance properties. Artificial neuron network (ANN) was used for prediction of the wear behavior of composites.  相似文献   

8.
In this study, dry sliding metal–metal and metal–abrasive wear behaviours of the aluminium matrix hybrid composites produced by pressure infiltration technique were investigated. These composites were reinforced with 37 vol% Al2O3 and 25 vol% SiC particles and contained up to 8 wt% Mg in their matrixes. While matrix hardness and compression strength increased, amount of porosity and impact toughness decreased with increasing Mg content of the matrix. Metal–metal and metal–abrasive wear tests revealed that wear resistance of the composites increased with increasing Mg addition. On the other hand, abrasive resistance decreased with increasing test temperature, especially above 200 °C.  相似文献   

9.
A series of composites of polyetheretherketone (PEEK) containing short carbon fibre (CF) in the range of 0–30% (w/w) was developed. Their wear behaviour in low amplitude oscillating wear (LAOW) mode was studied under various operating parameters such as load and temperature. The LAOW mode was studied in ball‐on‐plate configuration against steel (100 Cr 6) at ambient temperature and at 100°C. In this mode, the coefficient of friction (µ), specific wear rate (Ko) and limiting loading pressure‐sliding speed (PV) values were investigated. It was observed that with increase in %CF, the wear performance and utility of PEEK (limiting PV value) improved significantly. Thirty percent CF was best performing composite in all aspects. The µ, however, was hardly influenced with the inclusion of CF or variation in operating parameters. The same composites were also evaluated in abrasive wear mode to study the influence of severe operating conditions on wear and friction performance. In this wear mode, the CF‐filled composites showed poorer wear resistance than did neat PEEK. The specific wear rate was correlated with strength properties and it was observed that these composites closely followed the predictions of the Ratner–Lancaster plot. Scanning electron microscopy was used to examine the microstructural features of worn surfaces. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
A composite with continuous carbon fibers (CF) (80% by vol.) and high performance thermoplastic polyetherimide (PEI) matrix was developed and evaluated for various mechanical properties as a function of fiber orientation angle (0°, 30°, 45°, 60° and 90°). It was observed that Young's modulus, Poisson's ratio, toughness and % strain decreased with the increase of fiber orientation angle with respect to loading direction. In-plane shear modulus was highest for fibers with 45°. Overall, unidirectional (UD) CF reinforcement enhanced all strength properties of PEI significantly. Composites with fibers in 0° (parallel to loading direction) proved best in almost all the properties. Tribological evaluation in abrasive wear mode under different loads and fiber orientations indicated that coefficient of friction (μ) and specific wear rate (K0) decreased with load, in general. Comparatively low specific wear rate (K0), (in the order of 0.7 1×10?9 m3/Nm) was observed for 0° fiber orientation, while fibers in 90° showed almost three times higher wear rate. Overall fiber reinforcement in 0° orientations proved beneficial from both strength and tribological performance point of view. SEM proved useful to correlate wear rate with surface topography.  相似文献   

11.
Oxidation treatment with concentrated HNO3 was employed to the carbon fabric (CF) for various time intervals (30–180 min) to observe the effect of treatment on two simultaneous processes involved viz. improvement in its adhesion with the matrix and reduction of fiber strength which in turn is responsible for change in the performance properties of composites. Seven composites with untreated and acid treated CF were developed based on the polyetherimide (PEI) matrix and evaluated for adhesive wear properties under various loads (200–600 N) against mild steel disc. 90 min treated CF composite indicated the best tribological properties and showed 30% reduction in specific wear rate (K0) and 23% in coefficient of friction (μ) respectively at 600 N load. Treatment beyond this time proved detrimental for improvement in properties. Field emission scanning electron microscopy (FE-SEM) showed increase in roughness with treatment time, while atomic force microscopy (AFM) studies indicated substantial increase in roughness value. Scanning electron microscopy (SEM) of worn surfaces supported the wear mechanisms and improvement in adhesion between fiber and matrix.  相似文献   

12.
Fretting fatigue strength estimation considering the fretting wear process   总被引:1,自引:0,他引:1  
In fretting fatigue process the wear of contact surfaces near contact edges occur in accordance with the reciprocal micro-slippages on these contact surfaces. These fretting wear change the contact pressure near the contact edges. To estimate the fretting fatigue strength and life it is indispensable to analyze the accurate contact pressure distributions near the contact edges in each fretting fatigue process.So, in this paper we present the estimation methods of fretting wear process and fretting fatigue life using this wear process. Firstly the fretting-wear process was estimated using contact pressure and relative slippage as follows:
W=K×P×S,
Christopher J. SeetonEmail:
  相似文献   

14.
The Leiden MEMS Tribometer: Real Time Dynamic Friction Loop Measurements With an On-Chip Tribometer     
W. Merlijn van Spengen  Joost W. M. Frenken 《Tribology Letters》2007,28(2):149-156
On-chip MEMS tribometer devices until now have been much less sophisticated for dynamically sensing frictional forces than their FFM (friction force microscope) counterparts. In this article, we present a MEMS-based tribometer that can be used to measure dynamically, on-chip and in-situ, the frictional properties of MEMS-scale contact geometries. The device provides the first FFM-like friction loops with contacting MEMS sidewall surfaces. Depending on the normal load two regimes of operation are identified. At low and intermediate loads, the frictional behaviour reflects wear-less relative motion of the silicon oxide surfaces of the MEMS device and we observe repeatable, irregular stick-slip behaviour, related to the surface roughness. At very high loads, wear causes changes in the topography of the contacting surfaces.
W. Merlijn van SpengenEmail:
  相似文献   

15.
Measuring the effectiveness of a mass customization and personalization strategy: a market- and organizational-capability-based index     
Ashok Kumar  Kathryn E. Stecke 《International Journal of Flexible Manufacturing Systems》2007,19(4):548-569
The research of Kumar (Int J Flex Manuf Syst 16(4):287–312, 2004) is expanded to develop a methodology that measures the effectiveness of a mass customization and personalization strategy using a mass customization and personalization effectiveness index. This index extends Kumar (2004) in three significant ways: (1) it encompasses both service and manufacturing companies, (2) the assessment of product customization considers that customers assign different weights to different product features, and (3) the index captures the impact of both market perception and system capabilities. Three different measures are proposed. Which is appropriate should be a function of a particular company’s parameters. The circumstances under which each measure is best is a subject for future research. The validation and reliability of this index and these measures are also issues that should be addressed by future research.
Kathryn E. SteckeEmail:
  相似文献   

16.
A modeling approach for evaluating capacity flexibilities in uncertain markets   总被引:1,自引:0,他引:1  
M. F. Zaeh  N. Mueller 《International Journal of Flexible Manufacturing Systems》2007,19(3):151-172
The flexibility of production capacities is a means for coping with the challenges in today’s market environment, especially when dealing with strong fluctuations in customers’ demands. The reliable planning and evaluation of these capacities and their inherent flexibilities are considered an important task for many companies. This paper presents a capacity/cost model that considers the impact of market uncertainties and the corresponding capacity flexibilities. It proposes a demand forecasting method, a modeling approach for capacity-related flexibilities and the analysis of the economical correlation between available and required capacities. Based on this, capacity planning can be optimized using this model. The different steps of applying this modeling approach are illustrated with the aid of an example.
N. Mueller (Corresponding author)Email:
  相似文献   

17.
Investigation on solid particle erosion behaviour of polyetherimide and its composites     
《Wear》2007,262(7-8):807-818
The present investigation reports about, the solid particle erosion behaviour of randomly oriented short E-glass, carbon fibre and solid lubricants (PTFE, graphite, MoS2) filled polyetherimide (PEI) composites. The erosion rates (ERs) of these composites have been evaluated at different impingement angles (15–90°) and impact velocities (30–88 m/s). Mechanical properties such as tensile strength (S), ultimate elongation to fracture (e), hardness (HV), Izod impact strength (I) and shear strength (Ss) seems to be controlling the erosion rate of PEI and its composites. Polyetherimide and its glass, carbon fibre reinforced composites showed semi-ductile erosion behaviour with peak erosion rate at 60° impingement angle. However, glass fibre reinforced PEI composite filled with solid lubricants showed peak erosion rate at 60° impingement angle for impact velocities of 30 and 88 m/s, whereas for intermediate velocities (52 and 60 m/s) peak erosion rate observed at 30° impingement angle. It is observed that 20% (w/w) glass fibre reinforcement helps in improving erosive wear resistance of neat PEI matrix. Erosion efficiency (η) values (0.23–8.2%) indicate micro-ploughing and micro-cutting dominant wear mechanisms. The morphology of eroded surfaces was examined by using scanning electron microscopy (SEM). Possible erosion mechanisms are discussed.  相似文献   

18.
Dynamics of Vapor-phase Organophosphates on Silicon and OTS     
Worakarn Neeyakorn  Manju Varma  Cherno Jaye  James E. Burnette  Sang M. Lee  Robert J. Nemanich  Christine S. Grant  Jacqueline Krim 《Tribology Letters》2007,27(3):269-276
We have performed a quartz crystal microbalance (QCM) study of the uptake and nanotribology of organophosphate (tricresylphosphate (TCP) and t-butyl phenyl phosphate (TBPP)) layers adsorbed from the vapor phase onto amorphous and polycrystalline silicon and octadecyltrichlorosilane (OTS) treated silicon substrates. The materials were selected for their relevance to MEMS applications. About 3–5 monolayer-thick organophosphate films are observed to form readily on both silicon and OTS-treated silicon. The coatings moreover exhibit mobility in the form of interfacial slippage or viscoelasticity in response to the oscillatory motion of the QCM, implying that enhanced tribological performance may be expected in MEMS applications.
Jacqueline KrimEmail:
  相似文献   

19.
Interpretation of experiments on ZDDP anti-wear films through pressure-induced cross-linking     
N.J. Mosey  T.K. Woo  M. Kasrai  P.R. Norton  G.M. Bancroft  M.H. Müser 《Tribology Letters》2006,24(2):105-114
We review a recently developed molecular-level theory for the formation and functionality of zinc dialkyldithiophosphate anti-wear films [N. J. Mosey, M. H. Müser and T. K. Woo, Science 307 (2005) 1612]. This theory is based on the idea that pressure-induced cross-linking leads to chemically connected networks. The formation of cross-links modifies the mechanical properties of the films such that wear inhibition may be enhanced. Furthermore, the networks remain intact upon release of the pressure, which resists flow of the film out of the contact area. The ability of the theory to account for a diverse body of experimental data related to anti-wear additives and films is discussed. Routes towards the development of new AW additives are also suggested on the basis of the theory.
T.K. WooEmail:
  相似文献   

20.
Dynamic flexibility metrics for capability and capacity     
Pejman Hassanzadeh  Valerie Maier-Speredelozzi 《International Journal of Flexible Manufacturing Systems》2007,19(3):195-216
In production environments, such as Flexible Manufacturing Systems (FMSs), the schedule can be disturbed by the occurrence of unplanned events. Machines stop for major failures, maintenance, tool changes due to wear, or tool reassignments. The rescheduling process, however, can be costly. In this study, a dynamic measure of flexibility which helps to determine an appropriate time for rescheduling an FMS has been defined and investigated. Flexibility is defined as a function of Capability and Capacity. Accordingly, two metrics have been developed to monitor the capability and capacity efficiency of each machine in the system for responding to the dynamic system status. The value of each metric falls between 0 and 1 at all times. Higher values in the capability metric mean better machine selection and part distribution strategies among the machines. Higher values for the capacity metric mean higher machine utilization in the production plan. Based on the interaction between the metrics and their respective behavior in the system, four states have been identified and characterized. Simulations of various scenarios can be used to demonstrate the use of these metrics for monitoring FMS operations and determining appropriate times for rescheduling and tool reassignment.
Valerie Maier-Speredelozzi (Corresponding author)Email:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号