首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The reactive extrusion of maleic anhydride grafted polypropylene (PP‐g‐MAH) with ethylenediamine (EDA) as coupling agent is carried out in a corotating twin‐screw extruder to produce long chain branched polypropylene (LCBPP). Part of PP‐g‐MAH is replaced by maleic anhydride grafted high‐density polyethylene (HDPE‐g‐MAH) or linear low‐density polyethylene (LLDPE‐g‐MAH) to obtain hybrid long chain branched (LCB) polyolefins. Compared with the PP‐g‐MAH, PE‐g‐MAH, and their blends, the LCB polyolefins exhibit excellent dynamic shear and transient extensional rheological characteristics such as increased dynamic modulus, higher low‐frequency complex viscosity, broader relaxation spectra, significantly enhanced melt strength and strain‐hardening behaviors. The LCB polyolefins also have higher tensile strength, tensile modulus, impact strength and lower elongation at break than their blends. Furthermore, supercritical carbon dioxide (scCO2) is constructively introduced in the reactive extrusion process. In the presence of scCO2, the motor current of the twin extruder is decreased and LCB polyolefins with lower melt flow rate (MFR), higher complex viscosity and increased tensile strength and modulus can be obtained. This indicates that the application of scCO2 can reduce the viscosity of melt in extruder, enhance the diffusion of reactive species, and then facilitate the long chain branching reaction between anhydride group and primary amine group. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
A series of polypropylene/maleic anhydride grafted polypropylene octane elastomer (MAH‐g‐POE)/clay (PPMC) nanocomposites were prepared with a novel compatilizer MAH‐g‐POE and different contents of octadecyl amine modified montmorillonite, and the effects of clay contents on the dynamic mechanical and rheological properties of these PPMC composites were investigated. With clay content increasing, the characteristic X‐ray diffraction peak changed from one to two with intensity decreasing, indicating the decreasing concentration of the intercalated clay layers. The gradual decrease of crystallization temperature of PPMC composites with the increase of clay loading should be attributed to the preferred intercalation of MAH‐g‐POE molecules into clay interlayer during blending, which is also reflected by scanning electron microscopy observations. By evaluating the activation energy for the glass transition process of MAH‐g‐POE and polypropylene (PP) in the PPMC composites, it is found that clay intercalation could cause the restriction effect on the glass transition of both MAH‐g‐POE and PP, and this restriction effect appears stronger for PP and attained the highest degree at 5 wt % clay loading. The melt elasticity of PP could be improved apparently by the addition of MAH‐g‐POE, and 5 wt % clay loading is enough for further enhancing the elastic proportion of PP. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Poly(butylene terephthalate)/high density polyethylene (PBT/HDPE) blends and PBT/HDPE‐grafted maleic anhydride (PBT/HDPE‐g‐MAH) blends were prepared by the reactive extrusion approach, and the effect of blend compositions on the morphologies and properties of PBT/HDPE blends and PBT/HDPE‐g‐MAH blends was studied in detail. The results showed that flexural strength, tensile strength, and notched impact strength of PBT/HDPE blends decreased with the addition of HDPE, and flexural strength and tensile strength of PBT/HDPE‐g‐MAH blends decreased, while the notched impact strength of PBT/HDPE‐g‐MAH increased with the addition of HDPE‐g‐MAH. Compared with PBT/HDPE blends, the dimension of the dispersed phase particles in PBT/HDPE‐g‐MAH blends was decreased and the interfacial adhesion was increased. On the other hand, the effects of HDPE and HDPE‐g‐MAH contents on the crystalline and the rheological properties of the blends were also investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 6081–6087, 2006  相似文献   

4.
Multi‐monomer grafted copolymers, high‐density polyethylene‐grafted‐maleic anhydride‐styrene (HDPE‐g‐(MAH‐St)) and polyethylene wax‐grafted‐ maleic anhydride ((PE wax)‐g‐MAH), were synthesized and applied to prepare high‐performance high‐density polyethylene (HDPE)/wood flour (WF) composites. Interfacial synergistic compatibilization was studied via the coordinated blending of high‐density polyethylene‐grafted‐maleic anhydride (MPE‐St) and polyethylene wax‐grafted‐ maleic anhydride (MPW) in the high‐density polyethylene (HDPE)/wood flour (WF) composites. Scanning electron microscopy (SEM) morphology and three‐dimensional WF sketch presented that strong interactive interface between HDPE and WF, formed by MPE‐St with high graft degree of maleic anhydride (MAH) together with the permeating effect of MPW with a low molecular weight. Experimental results demonstrated that HDPE/WF composites compatibilized by MPE‐St/MPW compounds showed significant improvement in mechanical properties, rheological properties, and water resistance than those compatibilized by MPE, MPE‐St or MPW separately and the uncompatibilized composites. The mass ratio of MPE‐St/MPW for optimizing the HDPE/WF composites was 5:1. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42958.  相似文献   

5.
Polypropylene/polypropylene‐grafted‐maleic anhydride/glass fiber reinforced polyamide 66 (PP/PP‐g‐MAH/GFR PA 66) blends‐composites with and without the addition of polypropylene‐grafted‐maleic anhydride (PP‐g‐MAH) were prepared in a twin screw extruder. The effect of the compatibilizer on the thermal properties and crystallization behavior was determined using differential scanning calorimetry analysis. The hold time was set to be equal to 5 min at 290°C. These conditions are necessary to eliminate the thermomechanical history in the molten state. The crystallization under nonisothermal conditions and the plot of Continuous‐Cooling‐Transformation of relative crystallinity diagrams of both PP and PA 66 components proves that PP is significantly affected by the presence of PP‐g‐MAH. From the results it is found that an abrupt change is observed at 2.5 wt % of PP‐g‐MAH as a compatibilizer and then levels off. In these blends, concurrent crystallization behavior was not observed for GFR PA66. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1620–1626, 2007  相似文献   

6.
A new grafting method was developed to incorporate maleic anhydride directly onto solid‐state polypropylene powders. Maleic anhydride grafts altered the nonpolar characteristics of polypropylene so that much better mixing was achieved in blends and composites of polypropylene with many other polymers and fillers. Maleic anhydride was grafted onto polypropylene by the peroxide‐catalyzed swell grafting method, with a maximum extent of grafting of 4.60%. Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, tensile testing, and impact testing were used to characterize the isotactic polypropylene (iPP), maleic anhydride grafted polypropylene (MAH‐giPP), and (isotactic polypropylene)/(calcium carbonate) composites (iPP/CaCO3). The crystallinity and heat of fusion of the MAH‐giPP decreased as the extent of grafting increased. The mechanical properties of the CaCO3 filled polypropylene were improved by adding MAH‐giPP as a compatibilizing agent. The dispersion of the fillers in the polymer matrix and the adhesion between the CaCO3 particles and the polymer matrix were improved by adding the compatibilizer.  相似文献   

7.
Preparation of Chlorinated maleic anhydride grafted polypropylene (Cl‐PP‐g‐MAH) by free radical process was carried out using carbon tetrachloride (CCl4) as the solvent and benzoperoxide (BPO) as the initiator. Effects of reaction temperature, concentrations of PP‐g‐MAH and BPO on the rate of chlorination were studied. The experimental results showed the actual rate constant for chlorination of maleic anhydride grafted polypropylene followed the Arrhenius law and the total apparent activation energy was 19.7 kJ mol?1. The kinetic model for chlorination of maleic anhydride grafted polypropylene was found to be R = K[BPO]0.53[C]0.93. The properties of chlorination of maleic anhydride grafted polypropylene were better than those of maleic anhydride grafted polypropylene. The products were characterized by Fourier transform infrared spectroscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
This paper deals with (maleic anhydride)‐grafted polypropylene (MAH‐g‐PP) and wood flour reinforcement and their effects on the dynamic, mechanical, morphological, and rheological properties of waste polypropylene (PP) composites. MAH‐g‐PP was used as a compatibilizer to improve the physical interaction between the filler and matrix. The composites were prepared by using a twin‐screw extruder followed by injection molding. Thermal stability and mechanical properties of the compatibilized system increased as compared to their values for the uncompatibilized system. Also, nearly 60% and 30% loss was found for mechanical properties and weight loss, respectively, in a biodegradability study. J. VINYL ADDIT. TECHNOL., 20:24–30, 2014. © 2014 Society of Plastics Engineers  相似文献   

9.
In this article, high density polyethylene/styrene‐ethylene‐butylene‐styrene block copolymer blends (HDPE/SEBS) grafted by maleic anhydride (HDPE/SEBS‐g‐MAH), which is an effective compatibilizer for HDPE/wood flour composites was prepared by means of torque rheometer with different contents of maleic anhydride (MAH). The experimental results indicated that MAH indeed grafted on HDPE/SEBS by FTIR analysis and the torque increased with increasing the content of maleic anhydride and dicumyl peroxide (DCP). Styrene may increase the graft reaction rate of MAH and HDPE/SEBS. When HDPE/SEBS MAH was added to HDPE/wood flour composites, tensile strength and flexural strength of composites can reach 25.9 and 34.8 MPa in comparison of 16.5 and 23.8 MPa (without HDPE/SEBS‐g‐MAH), increasing by 157 and 146%, respectively. Due to incorporation of thermoplastic elastomer in HDPE/SEBS‐g‐MAH, the Notched Izod impact strength reached 5.08 kJ m?2, increasing by 145% in comparison of system without compatibilizer. That HDPE/SEBS‐g‐MAH improved the compatibility was also conformed by dynamic mechanical measurement. Scanning electron micrographs provided evidence for strong adhesion between wood flour and HDPE matrix with addition of HDPE/SEBS‐g‐MAH. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

10.
The influence of two different compatibilizers and their combination (maleic anhydride grafted high density polyethylene, HDPE‐g‐MA; maleic anhydride grafted linear low density polyethylene, LLDPE‐g‐MA; and 50/50 wt % mixture of these compatibilizers) on the rheological, thermomechanical, and morphological properties of HDPE/LLDPE/organoclay blend‐based nanocomposites was evaluated. Nanocomposites were obtained by melt‐intercalation in a torque rheometer in two steps. Masterbatches (compatibilizer/nanoclay 2:1) were obtained and subsequently diluted in the HDPE/LLDPE matrix producing nanocomposites with 2.5 wt % of nanoclay. Wide angle X‐ray diffraction (WAXD), steady‐state rheological properties, and transmission electron microscopy (TEM) were used to determine the influence of different compatibilizer systems on intercalation and/or exfoliation process which occurs preferentially in the amorphous phase, and thermomechanical properties. The LLDPE‐g‐MA with a high melt index (and consequently low viscosity and crystallinity) was an effective compatibilizer for this system. Furthermore, the compatibilized nanocomposites with LLDPE‐g‐MA or mixture of HDPE‐g‐MA and LLDPE‐g‐MA exhibited better nanoclay's dispersion and distribution with stronger interactions between the matrix and the nanoclay. These results indicated that the addition of maleic anhydride grafted polyethylene facilitates both, the exfoliation and/or intercalation of the clays and its adhesion to HDPE/LLDPE blend. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1726–1735, 2013  相似文献   

11.
The relaxation processes of orientation and disorientation of melts of high‐density polyethylene (HDPE) and polyamide‐6 (PA6) blends compatibilized with a compatibilizer precursor (CP) of HDPE‐grafted maleic anhydride (HDPE‐g‐MAH) were investigated in a restricted channel using real‐time ultrasonic technique. The experimental results showed that the evolution of ultrasonic velocity of HDPE/PA6 blends during the orientation or disorientation processes could be described by the exponential equation from which the maximum orientation degree and relaxation time could be obtained. Subsequently, the effects of CP on the relaxation processes of orientation and disorientation were studied. In addition, the relations of the CP content and the morphology and viscosity were investigated by scanning electron microscope analysis and rheological tests. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
The effects of two compatibilizing agents, polystyrene–poly(ethylene butylene)–polystyrene copolymer (SEBS) and SEBS‐grafted maleic anhydride (SEBS‐g‐MAH), on the morphology of binary and ternary blends of polyethylene, polypropylene, and polyamide 6,6 were investigated with scanning electron microscopy and melt rheology measurements. The addition of the compatibilizers led to finer dispersions of the particles of the minor component and a decrease in their size; this induced a significant change in the blend morphology. The rheological measurements confirmed the increased interaction between the blend components, especially with SEBS‐g‐MAH as the compatibilizer. New covalent bonds could be expected to form through an amine–anhydride reaction. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1976–1985, 2004  相似文献   

13.
Polymer blends based on polyolefins are of a great interest owing to their broad spectrum of properties and practical applications. However, because of poor compatibilities of components, most of these systems generally exhibit high interfacial tension, a low degree of dispersion and poor mechanical properties. It is generally accepted that polypropylene (PP) and nylon 6 (N6) are not compatible and that their blending results in poor materials. The compatibility can be improved by the addition of a compatibilizer, and in this study PP was functionalized by maleic anhydride (MAH) in the presence of an optimized amount of dicumyl peroxide (DCP). The reaction was carried out in the molten state using an internal mixer. Then, once the compatibilizer polypropylene‐graft‐maleic anhydride (PP‐g‐MAH) was prepared, it was added at various concentrations (2.5–10 wt%) to 30/70 glass fibre reinforced N6 (GFRN6) PP, and the mechanical properties were evaluated. It was found that the incorporation of the compatibilizer enhanced the tensile properties (tensile strength and modulus) as well as the Izod impact properties of the notched samples. This was attributed to better interfacial adhesion as evidenced by scanning electron microscopy (SEM). The optimum in these properties was achieved at a critical PP‐g‐MAH concentration. Copyright © 2005 Society of Chemical Industry  相似文献   

14.
The nonisothermal crystallization kinetics of high‐density polyethylene (HDPE) and polyethylene (PE)/PE‐grafted maleic anhydride (PE‐g‐MAH)/organic‐montmorillonite (Org‐MMT) nanocomposite were investigated by differential scanning calorimetry (DSC) at various cooling rates. Avrami analysis modified by Jeziorny, Ozawa analysis, and a method developed by Liu well described the nonisothermal crystallization process of these samples. The difference in the exponent n, m, and a between HDPE and the nanocomposite indicated that nucleation mechanism and dimension of spherulite growth of the nanocomposite were different from that of HDPE to some extent. The values of half‐time (t1/2), K(T), and F(T) showed that the crystallization rate increased with the increase of cooling rates for HDPE and composite, but the crystallization rate of composite was faster than that of HDPE at a given cooling rate. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. It was 223.7 kJ/mol for composite, which was much smaller than that for HDPE (304.6 kJ/mol). Overall, the results indicated that the addition of Org‐MMT and PE‐g‐MAH could accelerate the overall nonisothermal crystallization process of PE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3054–3059, 2004  相似文献   

15.
Dynamic vulcanization was successfully applied to epoxy resin reinforced polypropylene (PP)/ethylene‐octene copolymer (POE) blends, and the effects of different compatibilizers on the morphology and properties of dynamically cured PP/POE/epoxy blends were studied. The results show that dynamically cured PP/POE/epoxy blends compatibilized with maleic anhydride‐grafted polypropylene (MAH‐g‐PP) have a three‐phase structure consisting of POE and epoxy particles dispersed in the PP continuous phase, and these blends had improved tensile strength and flexural modulus. While using maleic anhydride‐grafted POE (MAH‐g‐POE) as a compatibilizer, the structure of the core‐shell complex phase and the PP continuous phase showed that epoxy particles could be embedded in MAH‐g‐POE in the blends, and gave rise to an increase in impact strength, while retaining a certain strength and modulus. DSC analysis showed that the epoxy particles in the blends compatibilized with MAH‐g‐PP were more efficient nucleating agents for PP than they were in the blends compatibilized with MAH‐g‐POE. WAXD analysis shows that compatibilization do not disturb the crystalline structure of PP in the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
With maleic anhydride grafted polypropylene (PP‐g‐MAH) as a compatibilizer, composites of block‐copolymerized polypropylene (B‐PP)/nanoclay were prepared. The effects of the PP‐g‐MAH and nanoclay content on the crystallization and rheological properties of B‐PP were investigated. The microcellular foaming behavior of the B‐PP/nanoclay composite material was studied with a single‐screw extruder foaming system with supercritical (SC) carbon dioxide (CO2) as the foaming agent. The experimental results show that the addition of nanoclay and PP‐g‐MAH decreased the melt strength and complex viscosity of B‐PP. When 3 wt % SC CO2 was injected as the foaming agent for the extrusion foaming process, the introduction of nanoclay and PP‐g‐MAH significantly increased the expansion ratio of the obtained foamed samples as compared with that of the pure B‐PP matrix, lowered the die pressure, and increased the cell population density of the foamed samples to some extent. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44094.  相似文献   

17.
A functionalized high‐density polyethylene (HDPE) with maleic anhydride (MAH) was prepared using a reactive extruding method. This copolymer was used as a compatibilizer of blends of polyamide 6 (PA6) and ultrahigh molecular weight polyethylene (UHMWPE). Morphologies were examined by a scanning electron microscope. It was found that the dimension of UHMWPE and HDPE domains in the PA6 matrix decreased dramatically, compared with that of the uncompatibilized blending system. The size of the UHMWPE domains was reduced from 35 μm (PA6/UHMWPE, 80/20) to less than 4 μm (PA6/UHMWPE/HDPE‐g‐MAH, 80/20/20). The tensile strength and Izod impact strength of PA6/UHMWPE/HDPE‐g‐MAH (80/20/20) were 1.5 and 1.6 times as high as those of PA6/UHMWPE (80/20), respectively. This behavior could be attributed to chemical reactions between the anhydride groups of HDPE‐g‐MAH and the terminal amino groups of PA6 in PA6/UHMWPE/HDPE‐g‐MAH blends. Thermal analysis was performed to confirm that the above chemical reactions took place during the blending process. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 232–238, 2000  相似文献   

18.
In this article, the dynamic vulcanization process was applied to polypropylene (PP)/Novolac blends compatibilized with maleic anhydride‐grafted PP (MAH‐g‐PP). The influences of dynamic cure, content of MAH‐g‐PP, Novolac, and curing agent on mechanical properties of the PP/Novolac blends were investigated. The results showed that the dynamically cured PP/MAH‐g‐PP/Novolac blend had the best mechanical properties among all PP/Novolac blends. The dynamic cure of Novolac improved the modulus and stiffness of the PP/Novolac blends. The addition of MAH‐g‐PP into dynamically cured PP/Novolac blend further enhanced the mechanical properties. With increasing Novolac content, tensile strength, flexural modulus, and flexural strength increased significantly, while the elongation at break dramatically deceased. Those blends with hexamethylenetetramine (HMTA) as a curing agent had good mechanical properties at HMTA content of 10 wt %. Scanning electron microscopy (SEM) analysis showed that dynamically cured PP/MAH‐g‐PP/Novolac blends had finer domains than the PP/MAH‐g‐PP/Novolac blends. Thermogravimetric analysis (TGA) results indicated that the incorporation of Novolac into PP could improve the thermal stability of PP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

19.
The electron‐beam preirradiation and reactive extrusion technologies were used to prepare maleic anhydride (MAH)/vinyltrimethoxysilane (VTMS)‐co‐grafting polypropylene (PP) as a high‐performance compatibilizer for wood‐flour/PP composites. The grafting content, chemical structure, and crystallization behavior of the compatibilizers were characterized through Fourier transform infrared spectroscopy, differential scanning calorimetry, and an extraction method. The effects of the compatibilizers on the mechanical properties, water absorption, morphological structure, and torque rheological behavior of the composites were investigated comparatively. The experimental results demonstrate that MAH/VTMS‐g‐PP markedly enhanced the mechanical properties of the composites. Compared with MAH‐g‐PP and VTMS‐g‐PP, MAH/VTMS‐g‐PP clearly showed synergistic effects on the increasing mechanical properties, water absorption, and compatibility of the composites. Scanning electron microscopy further confirmed that the adhesion and dispersion of wood flours in the composites were effectively improved by MAH/VTMS‐g‐PP. These results were also proven by the best water resistance of the wood‐flour/PP composites with MAH/VTMS‐g‐PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
In the present study, an epoxy resin was dynamically cured in a polypropylene (PP)/maleic anhydride–grafted PP (MAH‐g‐PP)/talc matrix to prepare dynamically cured PP/MAH‐g‐PP/talc/epoxy composites. An increase in the torque at equilibrium showed that epoxy resin in the PP/MAH‐g‐PP/talc composites had been cured by 2‐ethylene‐4‐methane‐imidazole. Scanning electron microscopy analysis showed that MAH‐g‐PP and an epoxy resin had effectively increased the interaction adhesion between PP and the talc in the PP/talc composites. Dynamic curing of the epoxy resin further increased the interaction adhesion. The dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had higher crystallization peaks than did the PP/talc composites. Thermogravimetric analysis showed that the addition of MAH‐g‐PP and the epoxy resin into the PP/talc composites caused an obvious improvement in the thermal stability. The dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had the best thermal stability of all the PP/talc composites. The PP/MAH‐g‐PP/talc/epoxy composites had better mechanical properties than did the PP/MAH‐g‐PP/talc composites, and the dynamically cured PP/MAH‐g‐PP/talc/epoxy composites had the best mechanical properties of all the PP/talc composites, which can be attributed to the better interaction adhesion between the PP and the talc. The suitable content of epoxy resin in the composites was about 5 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号