首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
Crystals of the ternary compound FeIn2S4 are grown by directional crystallization of a melt (the horizontal Bridgman method). Composition of the crystals and their crystal structure are determined. Magnetic properties of the FeIn2S4 crystals are studied in the temperature range 4–310 K in magnetic fields of 0–140 kOe. It is shown that the crystals under study are paramagnets up to ∼12 K and their specific magnetic moment monotonically increases with decreasing temperature. The antiferromagnetic character of indirect interactions between Fe2+ cations is established. The most probable causes and the mechanism of the formation of the magnetic state in the FeIn2S4 crystals are discussed.  相似文献   

2.
Single crystals of the CdGa2S4 ternary compound were grown either from melt or by chemical-vapor deposition. The crystal-lattice parameters and some physical properties of homogeneous crystals having defect chalcopyrite structure with the point symmetry group \(I\bar 4(S_4^2 )\) are determined. A number of photosensitive structures—Schottky barriers, heterostructures, photoelectrochemical cells, and natural-protein-CdGa2S4 barriers—were formed for the first time on the basis of the single crystals under investigation. The photoelectric properties of the structures obtained were studied using natural and linearly polarized light at T=300 K. The main parameters of these structures are determined, and it is concluded that they can be used in photodetectors.  相似文献   

3.
Photosensitive structures based on single crystals of the ZnIn2S4 ternary compound were fabricated and studied for the first time. The optoelectronic properties of this compound and corresponding structures were analyzed using the results of measurements of the optical-absorption spectra of ZnIn2S4 crystals, steady-state current-voltage characteristics, and photosensitivity of the structures at T=300 K. It is concluded that surface-barrier structures and heterojunctions based on ZnIn2S4 can be used as wide-band photodetectors of natural optical radiation.  相似文献   

4.
The effect of electric field and temperature on the conductivity of bulk Hg3In2Te6 crystals is investigated. It is shown that the I–V characteristics in high electric fields are of the S type with the effect of switching into a low-resistance state. The critical voltage of transition from the Ohm law to the exponential dependence of the current (I) on the voltage (U) and the threshold voltage of transition into the region of negative differential resistance dU/dI = s< 0 linearly depend on the sample thickness. The activation energies of conductivity in low and high electric fields are determined. It is established that the superlinear portion of the I–V characteristic with dU/dI > 0 is described by the dependence of the type I = I 0 exp(U/U 0) and caused by the electron transitions from the local centers with the energy level E t = 0.19 eV.  相似文献   

5.
Current-voltage characteristics of the In-ZnGa2Se4-In structure have been studied in the temperature range of 90–335 K. Based on the data calculated for the concentration of three trap types in ZnGa2Se4, the values N t = 1.4 × 1013, 8.2 × 1012, and 2.6 × 1012 cm−3 are obtained. The contact region transparency D k *= 10−5, surface recombination velocity S k = 0.65 m/s, and carrier lifetime τ = 1.5 × 10−4 s were determined. It was found that the current transmission mechanism in electric fields weaker than 103 V/cm is caused by monopolar carrier injection.  相似文献   

6.
Photosensitive structures based on n-HgGa2S4 single crystals were prepared and investigated. It was concluded that HgGa2S4 crystals are promising for the fabrication of photodetectors of natural and linearly polarized light in the short-wavelength spectral region.  相似文献   

7.
I. V. Bodnar 《Semiconductors》2016,50(9):1145-1150
For the single-crystal compounds In2S3 and AgIn5S8 produced by chemical gas-transport reactions and the Bridgman method (vertical version), the transmission spectra in the region of the fundamental absorption edge are studied in the temperature range from 20 to 300 K. From the recorded spectra, the band gaps of the In2S3 and AgIn5S8 single crystals are determined and the temperature dependences of the band gaps are constructed. It is established that, as the temperature is lowered, the band gap increases for both of the compounds. Calculation of the temperature dependences is performed. It is shown that the calculated and experimental values are in agreement with each other.  相似文献   

8.
Single crystals of the CdV2S4 ternary compound are grown, and their crystal structure, electrical properties, and optical absorption are studied. The substitution of vanadium for Group III element in AIIB 2 III C 4 VI compounds results in the formation of crystals of n-type conduction with an electron density of ~1018 cm?3 and a Hall mobility Un≈150 cm2/(V s) at T=300 K, which is limited by scattering on lattice vibrations. Rectifying photosensitive structures based on CdV2S4 single crystals are fabricated for the first time, their photoelectric properties are studied, and a conclusion is made on their applicability in the design of wide-spectral-range photodetectors of unpolarized light.  相似文献   

9.
Crystals of the compound In2S3 were grown by planar crystallization of the melt. The composition, structure, and electrical characteristics of the crystals obtained were determined. Photosensitive structures based on the grown In2S3 crystals were fabricated for the first time; spectral dependences of photoconversion quantum efficiency for H2O/In2S3 cells were measured. The features of the band-to-band absorption are discussed; energies of the direct and indirect optical transitions for In2S3 crystals are estimated. It is stated that In2S3 crystals can be used in wide-range (1.5–3.5 eV) photoconverters of nonpolarized radiation (in particular, in solar cells).  相似文献   

10.
A new class of ternary semiconductor compounds has been proposed and synthesized. ZnFe2S4 single crystals, which belong to this class, have been grown for the first time; and their structural, electrical, and optical properties have been investigated. The first photosensitive structures have been fabricated, and their photoelectric characteristics have been studied. A conclusion was made that heterostructures and surface-barrier structures based on ZnFe2S4 single crystals are promising for practical applications.  相似文献   

11.
The method of evaporation of starting targets with subsequent deposition onto glass substrates at temperatures of 480–720 K is used to grow homogeneous thin (0.6–1.5 μm) n-In2S3 films on which the In/n-In2S3 Schottky barriers were formed for the first time; evaporation was induced by a pulsed laser. The temperature dependence of resistivity of the films with the n-type conductivity was studied and the activation energy of donor centers in these films was determined. Spectral dependences of the photoconversion quantum efficiency η(?ω) for the barriers obtained were studied. An analysis of the spectral dependences η(?ω) made it possible to identify the type of band-to-band transitions and estimate the band gap in the In2S3 films. It is concluded that the thin In2S3 films can be used in broadband photoconverters of optical radiation.  相似文献   

12.
Bismuth sulfide (Bi2S3) polycrystalline samples were fabricated by mechanical alloying (MA) combined with spark plasma sintering (SPS). The microstructure and electrical transport properties were investigated with special emphasis on the influence of the ball-milling process. Bi2S3 compound powders could be readily synthesized directly from elemental powders under all the investigated conditions, and highly dense n-type bulk Bi2S3 samples with high density (>95%) were fabricated by the subsequent SPS process. Changing the MA conditions had no apparent influence on the microstructure or phase structure of the MA-derived Bi2S3 powders, but the electrical properties and thermopower of the SPS-sintered Bi2S3 bulk samples were greatly dependent on the MA speed and time. The power factor of Bi2S3 was increased to 233 μW K−2 m−1 at 573 K by optimizing the ball-milling process. This power factor is higher than values reported to date for Bi-S binary samples without texture.  相似文献   

13.
Single crystals of the FeIn2S4 ternary compound are grown by the Bridgman method. The composition and structure of the crystals are established. The transmittance spectra of the crystals in the region of the fundamental absorption edge are studied in the temperature range of T = 20–300 K. The band gap E g and its temperature dependence E g (T) are determined from the transmittance spectra. It is shown that the shape of the dependence E g (T) is typical of complex compounds.  相似文献   

14.
The method of heat treatment of metallic Cu-In-Ga layers in the N2 inert atmosphere in the presence of selenium and sulfur vapors was used to grow homogeneous films of Cu(In,Ga)(S,Se)2 alloys onto which the CdS or In2S3 films were deposited and, on the basis of these structures, the thin-film glass/Mo/p-Cu(In,Ga) (S,Se)2/n-(In2S3,CdS)/n-ZnO/Ni-Al photoelements were fabricated. The mechanisms of charge transport and the processes of photosensitivity in the obtained structures subjected to irradiation with natural and linearly polarized light are discussed. The broadband photosensitivity of thin-film heterophotoelements and the induced photopleochroism were detected; these findings indicate that there is an interference-related blooming of the structures obtained. It is concluded that it is possible to use ecologically safe cadmium-free thin-film heterostructures as high-efficiency photoconverters of solar radiation.  相似文献   

15.
The results of studying dielectric relaxation processes in the Ge28.5Pb15S56.5 glassy system are presented. The existence of the non-Debye relaxation process caused by the distribution of relaxors over the relaxation time according to the Cole–Cole model is revealed. The energy and structural parameters are calculated: the activation energy Ep = 0.40 eV and the molecular dipole moment μ = 1.08 D. The detected features are explained within the model according to which the chalcogenide-glass structure is a set of dipoles formed by charged defects such as D+ and D.  相似文献   

16.
Charge-carrier transport in Ge20As20S60 films has been studied using the transit time method under low-injection conditions at room temperature. It was found that drift mobilities of electrons and holes in Ge20As20S60 films are close to each other, i.e., μ e ≈ μ h ≈ 2 × 10−3 cm2 V−1 s−1 at T = 295 K and F = 5 × 104 V/cm. It was shown that the time dependence of the photocurrent during carrier drift and the voltage dependence of the drift mobility allowed the use of the concept of anomalous dispersive transport. Experimental data were explained using the model of transport controlled by carrier trapping by localized states with energy distribution near conduction and valence band edges described by the exponential law with a characteristic energy of ∼0.05 eV.  相似文献   

17.
In this work we studied the crystal structure and physical properties of the new one-dimensional cobalt oxide CaCo2O4+δ . The CaCo2O4+δ phase crystallizes as a calcium-ferrite-type structure, which consists of a corner- and edge-shared CoO6 octahedron network including one-dimensional double chains. The specific-heat Sommerfeld constant γ was found to be 4.48(7) mJ/mol K2. This result suggests that the CaCo2O4+δ phase has a finite density of states at the Fermi level. Metallic temperature dependence of the Seebeck coefficient S with a large thermoelectric power (S = 151 μV/K at 387 K) was observed. The origin of the large thermoelectric power may be attributed to the quasi one-dimensional character of the energy band near the valence band maximum in CaCo2O4+δ .  相似文献   

18.
The rare-earth semiconductor β-Ce2S3 compound samples were synthesized and their dielectric permittivity and electrical conductivity were measured in the temperature range 90–400 K. The energy-band structure has been determined. It is shown that the long-known large electrical parameter spread of semiconductor compounds close in composition to Ce2S3 is explained by the structure of impurity donor levels formed by cerium atoms and ions with different ionization degrees.  相似文献   

19.
The temperature dependence of electrical conductivity and current-voltage characteristics of FeIn2Se4 single crystals were studied. It is shown that the current in the nonlinear range of the current-voltage characteristic is caused by the field effect. The activation energy of charge carriers, the concentration of traps, and the shape of a potential well in the region of a trap are determined.  相似文献   

20.
In this work, Te-doped and S-filled S x Co4Sb11.2Te0.8 (x = 0.1, 0.15, 0.2, 0.25, 0.3, 0.4) skutterudite compounds have been prepared using solid state reaction and spark plasma sintering. Thermoelectric measurements of the consolidated samples were examined in a temperature range of 300–850 K, and the influences of S-addition on the thermoelectric properties of S x Co4Sb11.2Te0.8 skutterudites are systematically investigated. The results indicate that the addition of sulfur and tellurium is effective in reducing lattice thermal conductivity due to the point-defect scattering caused by tellurium substitutions and the cluster vibration brought by S-filling. The solubility of tellurium in skutterudites is enhanced with sulfur addition via charge compensation. The thermal conductivity decreases with increasing sulfur content. The highest figure of merit, ZT = 1.5, was obtained at 850 K for S0.3Co4Sb11.2Te0.8 sample, because of the low lattice thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号