首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
《陶瓷》2018,(12)
笔者利用微波烧结的方法制备出钛酸铋/铁酸钴(Bi_4Ti_3O_(12)/CoFe_2O_4)层状磁电复合陶瓷材料,主要研究了复合材料铁电相的含量对其性能的影响。采用XRD和SEM等相关测试手段对复合材料的相组成以及微观形貌进行了系统的分析。研究表明,在钛酸铋基层状复合材料中,所有的铁电相和铁磁相都可以很好的共存,并保持各自的物理特性。钛酸铋与铁磁相界面清晰,无明显扩散反应。钛酸铋层状复合材料在室温下表现出了优异的磁电耦合性能,材料磁电耦合系数最大为72mV/cm Oe。  相似文献   

2.
综述了国内外0-X型复合多铁性材料磁电耦合效应的研究进展。由磁性纳米微粒与铁电相复合而成的0-X型磁电复合多铁性材料具有更大的界面面积、更好的分散性以及因磁性相之间较差的连通性所带来的高阻特性等优点,理论上可获得室温下更强的磁电耦合效应。但是,0-X型磁电复合多铁性材料的磁电耦合效应不仅与铁电相和铁磁相本身有关,还依赖于两相的界面、尺寸、外延应变以及连接形式等因素,其中,磁电相之间的连接形式直接决定了复合材料中磁电相的分散性、界面面积及界面之间的作用力大小,进而影响磁电复合多铁性材料的磁电耦合性能。  相似文献   

3.
多铁性材料由于同时具有铁电有序和磁性有序并且在这两种有序态之间存在耦合效应,使其在电容器、传感器、存储器、自旋电子器件等领域具有广泛的应用前景而备受关注。然而,单相多铁性材料难以在室温下实现强的磁电耦合效应从而限制其实际应用。通过将具有强压电效应的铁电相与强磁致伸缩效应的铁磁相复合而成的多铁性材料理论上可获得室温下强的磁电耦合效应。但是,复合多铁性材料的磁电耦合效应与组成复合材料自身的性能、磁电相的体积比、测试条件(电磁场大小、频率)以及磁电相的连接方式等因素相关。其中,连接方式是调控磁电耦合效应的重要因素,也是目前研究的热点问题。目前连接方式也较多,如何通过连接方式的调控提高复合多铁性材料的磁电耦合效应极其重要。为此,综述了国内外通过连接方式来调控多铁性材料磁电耦合效应的研究进展,并提出了一些亟待解决的问题。  相似文献   

4.
作者利用XRD和SEM分析和观察了Ni(Co、Mn)Fe_2O_4-PZT(B)系陶瓷的相结构,研究了混合比及烧成与极化条件对磁电性能的影响,获得了磁电转换系数(dE/dH)_max达250mV×4π/10A的磁电陶瓷材料。  相似文献   

5.
多铁性氧化物基磁电材料的制备及性能   总被引:1,自引:1,他引:1  
多铁性材料由于其不但具有单一的铁性(如铁电性、铁磁性和铁弹性),而且由于铁性的耦合协同作用,会产生一些新的效应,使其可广泛应用于换能器、传感器、敏感器、多态存储等高技术领域。而氧化物基单相/复相陶瓷及其薄膜材料(如BiFeO_3,铁氧体/锆钛酸铅等),由于其良好的铁磁、铁电性能,正成为磁电材料的研究热点。本文综合介绍了几种单相、复合磁电陶瓷、薄膜材料的制备,论述了材料的显微结构与磁电性能之间的关联,并指出了该类材料存在的问题和今后的发展方向。单相磁电材料至今还没能应用到实际中,主要是因为大部分单相材料的Neel或Curie温度较低,在很低的温度下才有磁电效应,磁也转换系数随着温度升高到室温而趋于零。具有低漏导的BiFeO_3薄膜(具有高的Curie温度)将具有铁电应用,但作为多铁性应用,还需解决弱的磁电耦合性。虽然复合磁电材料性能比单相材料性能好,但是仍然存在一些问题。磁电多铁性材料具有潜在的巨大的商业应用前景,已使其成为新的研究热点。  相似文献   

6.
磁电多铁性材料中电荷和自旋序参量共存,并相互耦合在一起,产生磁电耦合效应。由于磁电耦合效应在未来高密度、低能耗、高读写速率器件的重要应用前景,近10年来,多铁性材料的研究成为了材料科学以及凝聚态物理领域的热点之一。BiFeO3不仅是为数不多的铁电反铁磁的多铁性材料之一,更难能可贵的是它的铁电Curie温度和反铁磁Néel温度都远高于室温。正因为如此,BiFeO3早在60多年前就受到人们的关注;但是直到2003年高质量外延薄膜的出现,才真正掀起了人们对其卓越性能和新奇物理现象研究的热潮。正是在这个背景下回顾BiFeO3的发展历史,着重介绍近10年此领域的研究成果:从晶体结构、电学性质(巨大铁电极化、电致阻变效应等)、磁学性质(自旋螺旋结构)以及磁电耦合特性等角度,对由BiFeO3多铁性模型体系中衍生出来的新奇物理现象进行详细介绍。最后,就近几年相关领域的研究进行总结和研究展望。  相似文献   

7.
PMNNT/CoFe2O4复合材料的结构和磁电性能   总被引:1,自引:0,他引:1  
采用固相法制备了Pb[(Mg1/3Nb2/3)0.536(Ni1/3Nb2/3)0.128Ti0.336]O3(PMNNT)和CoFe2O4不同组分的颗粒复合材料.复合材料在1 200℃烧结后,仍保持PMNNT和CoFe2O4结构,没有新相生成,但由于不同相之间存在元素扩散,材料的性能有了改变.该材料具有铁电和铁磁特征,表现出较高的介电常数,高压电系数,较高的饱和磁化强度,低矫顽力和高磁致伸缩效应等特征,并表现出磁电效应.  相似文献   

8.
通过溶胶–凝胶法在高致密度的钴铁氧体陶瓷片上制备锆钛酸铅(PZT)薄膜。在该复合结构中,PZT膜采用了较低的处理温度,从而有效避免了传统陶瓷共烧过程中出现的界面反应。样品表现出较好的铁电、介电、压电和磁电性能,并且面内磁电耦合系数可达58 m V/(cm?Oe)。  相似文献   

9.
铁电/铁磁复合材料由于其铁电相与铁磁相之间存在相互耦合作用,在存储器,传感器,换能器等方面具有广阔的应用前景。本文采用水热法制备了钛酸钡/铁酸钴陶瓷,研究了烧结温度对陶瓷晶体结构、表面形貌、电性能、磁性能以及磁电耦合性能的影响。结果表明:陶瓷主晶相为钛酸钡和铁酸钴,无其他杂相,且结晶度较好;陶瓷表面较为平整、孔洞较少,晶粒分布均匀,平均晶粒尺寸约为1.2μm;烧结温度为1200℃时,剩余极化强度最大,为11.83μC/cm~2,烧结温度为1300℃时,剩余极化强度最小,仅为049μC/cm~2;烧结温度为1250℃时,漏电流密度比其它样品小两个数量级;烧结温度为1250℃的陶瓷具有最大的介电常数和最小的损耗;烧结温度为1200℃时陶瓷的剩余磁化强度最小,为6.03 emu/g,烧结温度为1300℃时所得陶瓷的剩余磁化强度最大,为37.64 emu/g,且在外场(2mT)作用下剩余极化强度的相对变化量最大(34.69%),表现出一定的磁电耦合特性。  相似文献   

10.
以传统固相烧结合成法制备出Co_2O_3掺杂的无铅压电陶瓷材料Ba_(0.85)Ca_(0.15)Zr_(0.1)Ti_(0.9)O_3-xCo_2O_3(BCZT-xCo,x=0~0.15 wt%)。通过X射线衍射(XRD)和扫描电子显微镜(SEM)以及其他分析方法研究Co_2O_3掺杂量对制备的BCTZ无铅压电陶瓷的压电性能、介电性能、相组成以及微观结构的影响。结果表明,所有样品均具有纯钙钛矿相结构。随着Co_2O_3掺杂量的增加,晶粒尺寸、介电损耗tanδ、压电系数d_(33)和平面机电耦合系数k_p逐渐减小,而介电常数ε_r逐渐增加。当x=0 wt%时,BCZT-xCo无铅压电陶瓷具有最佳压电性能:d_(33)=420 pC/N,k_p=40%;x=0.15%时,BCZT-xCo无铅压电陶瓷具有最佳介电性能:ε_r=5,100,tanδ=1.4%。  相似文献   

11.
以Bi(NO3)3·5H2O、Fe(NO3)3·9H2O和Ca(NO3)2·4H2O为原料、乙二醇甲醚为溶剂、柠檬酸为络合剂,采用溶胶–凝胶法制备Bi1–x Cax FeO3(x=0、0.05、0.10、0.15、0.20)陶瓷样品。结果表明:所有样品的主衍射峰与纯相BiFeO3相吻合,样品晶粒尺寸随Ca2+掺杂量的增加而减小,在室温下各样品均具有完整的磁滞回线,样品铁磁性显著提高。当x=0.10时,剩余比磁化强度达到最大值(0.11A·m2/kg)。在外加磁场为398 kA/m时,样品的比磁化强度在644 K附近出现明显的反铁磁相变,反铁磁相变温度TN随掺杂量的增加而升高。在300~900 K,样品顺磁相变温度TP,以及TN和TP处比磁化强度的差值随Ca2+的增加均呈现先上升,在x=0.10时达到最大值,之后又呈下降趋势。样品在850K时比磁化强度出现明显变化,变化幅度随Ca2+掺杂量的增加而减小,在x=0.10时最小,之后又增大。不同磁场下样品剩余比磁化强度随温度变化表明:Bi1–x Cax FeO3陶瓷样品存在变磁性,当x=0.10时,变磁性最为明显。磁电耦合效应观测结果表明:样品的磁电耦合系数为负值,介电常数随外磁场变化反应灵敏,在x=0.10时磁电耦合效应为–14.2%,是纯相BiFeO3(其磁电耦合效应为–5%)的近3倍,表明掺杂适量Ca2+可增强样品的磁电耦合性能。  相似文献   

12.
以硝酸镧和醋酸镍为原料,利用化学溶液法在硅基底上制备了具有良好导电性的LaNiO3(LNO)薄膜。以醋酸铅、硝酸氧锆、钛酸丁酯、硝酸铁、醋酸钴为原料,合成了Pb(Zr0.52Ti0.48)O3-CoFe2O4(PZT-CFO)溶液,并在LNO/Si薄膜上制备了PZT-CFO复合薄膜。通过X射线衍射、扫描电镜和电-磁测试研究了PZT-CFO复合薄膜的相结构、表面形貌、铁磁和铁电性能。结果表明:钙钛矿结构的PZT相和尖晶石结构的CFO相以纳米晶形式共存于PZT-CFO复合薄膜中,无其他杂相产生。750℃煅烧1h的PZT-CFO复合薄膜的剩余极化强度达6μC/cm2,剩余磁化强度可达20kA/m,表现出良好的铁磁、铁电双重特性。  相似文献   

13.
反铁电陶瓷材料由于其相变储能特性,在脉冲电容器领域引起广泛关注。然而,低的储能密度和储能效率难以实现器件的小型化,高功率化,阻碍了基于反铁电陶瓷脉冲电容器的实际应用。本工作采用流延法制备(Pb((1–1.5x))Tmx)(Zr0.55Sn0.44Ti0.01)O3(x=0.00、0.02、0.04、0.06)反铁电陶瓷,通过构建晶界阻抗策略,改善电学性能,提高击穿强度,进而达到提高其储能密度的目的。系统地研究了掺杂不同含量的Tm3+,对(Pb((1–1.5x))Tmx)(Zr0.55Sn0.44Ti0.01)O3陶瓷的相结构,微观形貌,介电性能,储能特性,电学性能以及放电行为的影响。结果表明,随着Tm3+含量的增加,晶粒逐步细化,界面数量增加,致使反铁电陶瓷由晶界–晶粒阻抗作用转变为...  相似文献   

14.
为了制备性能优异的双辊薄带连铸用陶瓷侧封板,以六方氮化硼和莫来石为主要原料,Y_2O_3、Ti N、Zr O_2、Al N以及Al_2O_3的混合物为添加剂,采用热压烧结法(1 750~1 800℃,120 min,25 MPa,N_2气氛)制备了三种不同组成的氮化硼-莫来石复合陶瓷材料,测试并分析了烧后试样的弯曲强度、硬度、热膨胀系数、物相组成和显微结构。结果表明:1)随着氮化硼含量的增加,莫来石含量的减少,氮化硼-莫来石复合陶瓷试样的弯曲强度、硬度和热膨胀系数均呈现逐渐减小的趋势。2)当六方氮化硼、莫来石和添加剂的添加质量分数分别为50%、30%和20%时,所制备氮化硼-莫来石复合陶瓷材料的综合性能最佳,其弯曲强度为287.5 MPa,硬度为162.3HV5,热膨胀系数约为4.5×10~(-6)℃~(-1)(室温);XRD和SEM分析显示,其主要物相为h-BN、莫来石、α-Al_2O_3以及Si Al4O_2N_4,其中基体相以氮化硼为主,莫来石为第二相,Si Al_4O_2N_4固溶体存在于晶界处,与莫来石共同作用而赋予了材料良好的力学性能。  相似文献   

15.
采用传统陶瓷工艺制备了(Ag_(0.75)Li_(0.1)Na_(0.1)K_(0.05))(Nb_(1-x)Sb_x)O_3(x=0~0.10)系无铅压电陶瓷,研究了Sb含量变化对陶瓷的相结构、显微结构和电性能的影响。结果表明:在所研究组成范围内陶瓷均形成了单一钙钛矿结构,当x=0.03~0.06时陶瓷存在正交-伪立方两相共存区;Sb~(5+)的引入使陶瓷的晶粒尺寸有所减小,当x=0.04~0.06时陶瓷晶粒尺寸较为均匀(1~2μm)。陶瓷压电常数d_(33)和机电耦合系数k_p随Sb含量增加均先增大后减小,d_(33)和k_p分别在x=0.04和0.05时达到最大值68 p C/N和26.0%。Sb~(5+)的引入使陶瓷的居里温度有所降低,铁电相变得更加不稳定。  相似文献   

16.
选取传统高温固相反应合成法制备出Bi_2O_3掺杂的无铅压电陶瓷材料Ba_(0.85)Ca_(0.15)Zr_(0.08)Ti_(0.92)O_3-xBi_2O_3(BCZT-x Bi,x=0~0.15)。采用扫描电子显微镜、准静态压电常数测试仪等一系列检测手段,探讨了Bi_2O_3掺杂对BCZT基无铅压电陶瓷微观组织和电学性能产生的作用,从SEM图像得知,陶瓷的晶粒尺寸随着Bi_2O_3掺杂量的增多先逐渐变小后略微有所增大,XRD图谱则表明,掺杂量不等的Bi~(3+)均能够弥散进入钛酸钡晶格中,能完整固溶于BCZT陶瓷,并且材料具有典型的钙钛矿相结构。当Bi_2O_3掺杂量为0.15 mol%时,此无铅压电陶瓷材料拥有较好的介电性能,介电损耗tanδ的值仅是1.2%,介电常数ε_r的值是5100;当没有掺杂Bi_2O_3时,此陶瓷的压电性能最优,压电系数的值d_(33)=386 p C/N,机电耦合系数的值K_p=44.8%。  相似文献   

17.
采用溶胶-凝胶法合成了Li_4Ti_5O_(12)/Li_(1.3)Al_(0.3)Ti_(1.7)(PO_4)_3复合负极材料,通过X射线衍射、扫描电子显微镜、恒电流充放电、循环伏安和电化学阻抗研究复合材料的结构、形貌及电化学性能。结果表明:溶胶-凝胶法能合成纯相Li_4Ti_5O_(12)/Li_(1.3)Al_(0.3)Ti_(1.7)(PO_4)_3复合负极材料颗粒均匀。与纯相Li_4Ti_5O_(12)相比,引入Li_(1.3)Al_(0.3)Ti_(1.7)(PO_4)_3的Li_4Ti_5O_(12)复合负极材料具有更低的锂离子嵌入/脱出阻抗,Li_(1.3)Al_(0.3)Ti_(1.7)(PO_4)_3质量分数为1%、2%、3%、4%、5%的Li4Ti5O12复合负极材料首次放电容量比纯相Li_4Ti_5O_(12)分别提高了6.2%、11.8%、15.5%、8.0%和2.0%。充放电循环20次后,Li_(1.3)Al_(0.3)Ti_(1.7)(PO_4)_3质量分数为3%的Li_4Ti_5O_(12)复合负极材料循环性能最好,平均每次循环容量衰减率为0.022%。  相似文献   

18.
采用固相合成法分别制备了尖晶石结构Co Fe_2O_4和钙钛矿结构Ba Ti O_3粉末,烧结得到x Co Fe_2O_4/(1―x)Ba Ti O_3(x=0.2,0.4,0.6,0.8)复相多铁材料,对材料的成分、介电性能、铁电性、磁性能进行了表征。结果表明:当x=0.2时所得的复相多铁材料两相共存,无杂相,而其他组分均不同程度地存在杂相。复相多铁材料x Co Fe_2O_4/(1―x)Ba Ti O_3具有铁电性和铁磁性,且性能受铁磁相含量影响明显。随铁磁相组分增加,材料介电常数变小,漏电流增大,铁电性能变差;同时,铁磁相间颗粒接触面积增大,磁化作用得到加强,材料磁性能得到提升。  相似文献   

19.
笔者通过多种方法制备石墨烯,并分别将不同方法制备的石墨烯与氧化铝混合得到新型复合陶瓷,进一步扩展了石墨烯的研究和应用范围。通过研究不同烧结工艺对石墨烯Al_2O_3复合陶瓷材料摩擦磨损、硬度、致密度、物相组成和微观组织的影响规律,在提高Al_2O_3基陶瓷材料力学性能的同时,对氧化铝基陶瓷材料的制备工艺进行优化,减少了Al_2O_3基陶瓷材料烧结能耗、缩短了制备周期、从而降低了生产成本。其不同的补强作用机理,为进一步研究石墨烯氧化铝复合陶瓷材料以及提高Al_2O_3基陶瓷材料的力学性能提供了一定的理论指导。同时我们还通过控制石墨烯的制备方法,在不同烧结工艺条件下烧结制备石墨烯氧化铝复合陶瓷材料,并对其进行测试分析,对于促进Al_2O_3基陶瓷材料的发展同样具有重要的理论意义与实际应用价值。  相似文献   

20.
刘红艳  陈鼎  叶插柳  李林 《硅酸盐通报》2011,30(3):572-576,582
作为一种高性能的新型陶瓷材料,铁电陶瓷已经成为国内外研究的一个热点.本文主要从机械合金化制备高性能铁电材料的相形成机理以及采用机械合金化制备各种钙钛矿结构的铁电陶瓷(钛酸钡、钛酸铅、锆钛酸铅、铌镁酸铅)粉末方面,介绍了采用机械合金化方法制备这种高性能铁电陶瓷材料的国内外有关研究进展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号