首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The synthesis and comparative characterization of molecularly imprinted polymers (MIPs) in two different formats, as thin layers grafted to the entire surface of polypropylene microfiltration membranes and as conventional particles, are described. Imprinting with atrazine was performed by using itaconic acid and N,N′‐methylene‐bisacrylamide as functional and crosslinker monomers in methanol as the solvent. Polymerization had been initiated by UV irradiation of benzoin ethyl ether and driven to low monomer conversion for the thin‐layer polymers and to high monomer conversion for the bulk materials. The binding performance of MIP composite membranes and of MIP particles packed into cartridges was evaluated in solid‐phase extraction (SPE) experiments of atrazin and simazin from aqueous solutions. The SPE performance depended strongly on pH and buffer concentration. Although an imprinting effect was observed for both formats, the specificity (MIP versus Blank) and the selectivity (atrazin versus simazin) were much higher for the thin‐layer composite membranes than for the bulk polymer particles. In particular, the atrazin/simazin selectivity increased from 32% for the Blank to 78% for the MIP composite membranes. A major reason is the hindered accessibility of the internal pore structure of the particles, whereas the porous filtration membranes are much more compatible with the fast SPE protocol. Furthermore, based on pKa of the functional carboxylic acid groups—from potentiometric titration and polarity of the binding environment—from fluorescent probe analysis, different properties of the imprinted binding sites can be postulated for the two MIP formats. However, the differences between MIP and Blank were much more pronounced for the thin‐layer composite membranes. The hydrophobic surface of the polypropylene membrane appeared to be a major factor affecting the binding performance of thin‐layer MIPs. The new porous composite membranes could be particularly useful as selective SPE materials in environmental, pharmaceutical, and analytical applications. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 362–372, 2005  相似文献   

2.
A computational approach was developed for screening functional monomers for rational design of molecularly imprinted polymer (MIP) membranes. It was based on a comparison of the binding energy of complexes between a template and various functional monomers. According to the results of theoretical calculations, MIP membranes with chlorogenic acid as a template were prepared with a UV irradiation polymerization method, using 4‐vinylpyridine as a functional monomer and N,N′‐methylenebisacrylamide as a crosslinker, with poly(vinylidene fluoride) microfiltration membranes as the support. Membranes covered with a thin layer of imprinted polymer selective to chlorogenic acid were then obtained and tested using the equilibrium‐adsorption method. The high affinity of these synthetic membranes to chlorogenic acid, together with their straightforward and inexpensive preparation, provides a good basis for the development of applications of imprinted polymers in separation processes such as solid‐phase extraction. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
Composite microfiltration membranes covered with a thin layer of molecularly imprinted polymer (MIP) selective to adenosine 3′:5′‐cyclic monophosphate (cAMP) were obtained and their separation properties were studied. MIP layers were prepared using photoinitiated copolymerization of dimethylaminoethyl methacrylate (DMAEM) as a functional monomer and trimethylopropane trimethacrylate (TRIM) as a crosslinker in the presence of cAMP as template in ethanol/water mixture. Blank membranes were prepared under the same conditions, but without cAMP. It was found out that pH of aqueous solution of the template has an effect on the binding of cAMP with MIP membranes. It was concluded that the ability of MIP membranes to bind cAMP is a result of both ionic interactions between charged dimethylamino groups of polymer matrix and the phosphorous residue of cAMP molecule and the specific shape of recognizing sites. These sites are complementary to cAMP in terms of three dimensional shape as well as correct position of functional groups involved in the template binding. This paper shows that the binding capability of MIP membranes can be adjusted by varying the values of degree of modification (DM). Atomic Force Microscopy (AFM) and Scanning Force Microscopy (SEM) were used to visualise surfaces and cross sections of membranes to gain better understanding in the analysis of MIP layer deposited on membranes.  相似文献   

4.
Jun Yoo 《Polymer》2011,52(12):2499-2504
The synthesis of comb block copolymers by ring opening metathesis polymerization (ROMP), ring opening polymerization (ROP), and atom transfer radical polymerization (ATRP) is described. Block copolymers were synthesized by the ROMP of oxanorbornene and norbornene monomers followed by hydrogenation of the olefins along the backbone. One block of these diblock copolymers possessed initiators either for the ROP of (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione or the ATRP of butyl acrylate. The synthesis and characterization of comb polymers with arms composed of poly(lactic acid) and poly(butyl acrylate) are described. These polymers had well-defined peaks in the size exclusion chromatography spectra which indicated that no homopolymers were synthesized. A comb block copolymer with polymeric arms of poly(styrene-b-vinylpyridine) is described. Vinylpyridine was polymerized from a comb polymer with poly(styrene) arms by ATRP at high dilution of the comb polymer.  相似文献   

5.
In this work, molecular crowding agent was first applied to the preparation of molecularly imprinted polymer (MIP)‐based drug release system. With S‐naproxen as template, the MIPs were prepared with methacrylic acid and ethylene glycol dimethacrylate, in the presence of polystyrene as molecular crowding by precipitation polymerization. Morphology and particle size of the resulting MIP sub‐micrometer microparticles were determined by scanning electron microcopy and dynamic light scattering. The influence of several parameters on the sustained release of the imprinted polymers was investigated, including the molar ratio of the imprint molecule to the functional monomers, the molar ratio of the functional monomers to the crosslinking monomers, and the type of the porogen. In addition, the release of the MIP was compared to that of the traditionally prepared imprinted polymers with other porogens. The transport mechanism of template was studied by fitting experiment data with different model equations and calculating the corresponding parameters. The novel MIPs prepared with molecular crowding were able to prolong S‐naproxen, in a phosphate buffers solution of pH 7.4, for more than 12 h, indicating better sustained release effect than that prepared with noncrowding agent. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

6.
Molecular imprinted polymers are artificial, template-made materials with the ability to recognize and to specifically bind the target molecule. The aim of this study is to prepare supermacroporous cryogel with embedded bilirubin-imprinted particles which can be used for the selective removal of bilirubin from human plasma. N-methacryloyl-(l)-tyrosinemethylester (MAT) was chosen as the pre-organization monomer. In the first step, bilirubin was complexed with MAT and the bilirubin-imprinted poly(hydroxyethyl methacrylate-N-methacryloly-(l)-tyrosine methyl-ester) [MIP] monolith was produced by bulk polymerization. MIP monolith was smashed and the particles ground and sieved through 100 μm sieves. In the second step, the supermacroporous poly(hydroxyethyl methacrylate) (PHEMA) cryogel with embedded MIP particles [PHEMA/MIP composite cryogel] was produced by free radical polymerization initiated by N,N,N′,N′-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. After that, the template (i.e., bilirubin) molecules were removed using sodium carbonate and sodium hydroxide. Compared with the PHEMA cryogel (0.2 mg/g polymer), the bilirubin adsorption capacity of the PHEMA/MIP composite cryogel (10.3 mg/g polymer) was improved significantly due to the embedded MIP particles into the polymeric matrix. The relative selectivity coefficients of PHEMA/MIP composite cryogel for bilirubin/cholesterol and bilirubin/testosterone were 8.6 and 4.1 times greater than the PHEMA cryogel, respectively. The PHEMA/MIP composite cryogel could be used many times without decreasing the bilirubin adsorption capacity significantly.  相似文献   

7.
Grafting polymers onto carbon black surface by trapping polymer radicals   总被引:1,自引:0,他引:1  
Qiang Yang  Weidong Xiang  Jianhua Li 《Polymer》2007,48(10):2866-2873
Polystyrene, poly(styrene-co-maleic anhydride), poly[styrene-co-(4-vinylpyridine)] and poly(4-vinylpyridine) with well-defined molecular weights and polydispersities were synthesized using 4-hydroxyl-2,2,6,6-tetramethylpiperidin-1-oxyl (HTEMPO)-mediated radical polymerization initiated by azobisisobutyronitrile or benzoyl peroxide. The resultant polymers were grafted onto carbon black surface through a radical trapping reaction at 130 °C in DMF. 1H NMR, TGA, TEM, AFM, DSC and dynamic light scattering were used to characterize the carbon black grafted with polymers. It was found that the carbon black grafted with polystyrene and poly(styrene-co-maleic anhydride) could be dispersed in THF, chloroform, dichloromethane, DMF, etc., and the carbon black grafted with poly(4-vinylpyridine) and poly[styrene-co-(4-vinylpyridine)] could be well dispersed in ethanol.  相似文献   

8.
Morphological and structural characteristics of a variety of powder nanocomposites with fumed oxides (silica, silica/alumina, silica/titania) and different linear polar polymers (poly(ethylene oxide), poly(ethylene glycol), poly(vinyl alcohol), poly(vinyl pyrrolidone), polydimethylsiloxane and proteins (ossein, gelatine, BSA)), were analyzed using nitrogen adsorption, infrared (IR) spectroscopy, AFM, and TPD MS methods. A monolayer or lower coverage of oxide nanoparticles by linear polar polymers results in relatively small changes in the specific surface area and adsorption capacity compared with similarly treated fumed oxides alone. The pore size distributions of dried solid residual oxide/polymer samples demonstrate a more ordered pore structure than the initial powders. This structure, as well as the morphology of secondary particles, depends slightly on the content of polymers (Cpol) at coverage less than a monolayer. If polymer-polymer interactions are weaker than polymer-oxide interactions, the perturbation degree Ф (normalized to molecular weight of a polymer segment mseg) of surface silanols at fumed silica A-300 depends very weakly on the type of adsorbed polymers. Among the studied polymers only PVA demonstrates Ф(Cpol/mseg) values smaller than the other systems because of the formation of strong hydrogen bonds between PVA molecules.  相似文献   

9.
Side-chain liquid crystalline block polymers containing a poly[6-[4-(4′-methoxyphenyl)phenoxy]hexyl methacrylate] (PMMA-LC) segment and a styrene-co-maleic anhydride segment (alternating structure) were prepared via reversible addition fragmentation chain transfer (RAFT) polymerization. PMMA-LC was initially prepared via RAFT polymerization mediated by 2-(2-cyanopropyl)dithiobenzoate (CPDB). The resulting polymer was subsequently isolated and used to re-initiate styrene/maleic anhydride alternating copolymerization. The block copolymerization proceeded to intermediate conversions with narrow polydispersities, however at higher conversions some molecular weight broadening was observed and this was attributed to radical-radical termination reactions. The resulting polymers were analyzed via size exclusion chromatography (SEC), differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Microporous honeycomb structured films were cast from solutions of the block copolymers to form porous molecular composites.  相似文献   

10.
A novel photoresponsive functional monomer bearing a siloxane polymerizable group and azobenzene moieties was synthesized, and then photoresponsive molecularly imprinted sol‐gel polymers were successfully fabricated from the synthesized functional monomer, using (4‐chloro‐2‐methylphenoxy)acetic acid (MCPA) as a molecular template. The photoisomerization properties of the functional monomer are retained after incorporation into the rigid three‐dimensional crosslinked polymer matrix. The template is then removed from the resulting polymer to generate pores, which are complementary to the template in shape, size and functionality. The substrate affinity of the molecularly imprinted polymer (MIP) receptor sites is photoswitchable. This can be attributed to the photoisomerization of azobenzene chromophores within the MIP receptors, resulting in alteration of their geometry and the spatial arrangement of their binding functionalities. The binding affinity of the imprinted recognition sites was switchable by alternate irradiation with UV and visible light, suggesting that azobenzene groups located inside the binding sites could be used as chemical sensors and the transcis isomerization could regulate the affinity for MCPA. To study the hydrogen bond interactions between template molecules and functional monomer, computational molecular modeling was employed. The data indicate that the design of the MIP is rational. Copyright © 2012 Society of Chemical Industry  相似文献   

11.
Cationic polymerization of 2-adamantyl vinyl ether (2-vinyloxytricyclo[3.3.1.13,7]decane; 2-AdVE) and copolymerization of 2-AdVE with n-butyl vinyl ether (NBVE), 2-methoxyethyl vinyl ether (MOVE), or 2-(2-vinyloxyethoxy)ethyl acrylate (VEEA), vinyl ethers containing a flexible chain or a polymerizable group, were performed to obtain poly(vinyl ether) plastics for optical use. With the living cationic initiating systems such as isobutyl vinyl ether–acetic acid adduct/ethylaluminum sesquichloride (IBEA/Et1.5AlCl1.5) or the hydrogen chloride/zinc chloride (HCl/ZnCl2), all the obtained copolymers had unimodal and relatively narrow molecular weight distributions (polydispersity ratio: M w/M n = ~1.5 at high conversion) throughout the copolymerizations. These results indicate that the copolymerizations of 2-AdVE with the three comonomers led to the statistical copolymers without contamination of homopolymers. With BF3OEt2 as an initiator, homopolymer of 2-AdVE and poly(2-AdVE)-based polymers, poly(2-AdVE-stat-NBVE), poly(2-AdVE-stat-MOVE), and poly(2-AdVE-stat-VEEA), were produced with high-molecular weights (M n = 31,800–116,000) in toluene at ?30 °C in quantitative yield within 10 min. They have excellent thermal stability owing to their high glass transition and thermal decomposition temperatures. The transparency (86–91 %) and refractive index (1.52–1.53) of the molded polymers are similar to those of conventional optical plastics such as poly(methyl methacrylate) (PMMA) and polycarbonate (PC), whereas their specific gravity (1.09–1.12) and water absorption (0.06–0.17 %) are significantly lower than those of PMMA and PC. In addition, the Abbe number of poly(2-AdVE), poly(2-AdVE-stat-NBVE), and poly(2-AdVE-stat-MOVE) exceeded 60 and was higher than those of PMMA and PC, indicating that the poly(2-AdVE)-based plastics are very suitable for optical lens.  相似文献   

12.
Esra Kucukpinar  Pemra Doruker 《Polymer》2003,44(12):3607-3620
The objective of this study is to investigate the relationship between gas permeability and the chemical structure and conformational properties for copolymers of styrene and its homopolymer. The diffusion and the solubility coefficients of small gas molecules (He, H2, Ne, O2, N2, CH4, Ar, CO2) in amorphous structures of poly (styrene-alt-maleic anhydride) copolymer (SMA), poly (styrene-stat-butadiene) rubber (SBR), and atactic polystyrene (PS) are investigated by the transition state approach. Simulation results are found to be in good agreement with the experimentally measured values. The transport behavior of H2O molecules is also studied in the same bulk structures by fully atomistic molecular dynamics simulations. In general, the diffusion coefficients of the gases in these matrices decrease in the following order: SBR>PS>SMA, whereas the solubility coefficients follow the reverse order. The differences in the mobility of the matrices seem to be the dominant determining factor for diffusion. And the solubility coefficients depend on the free volume distribution of the matrices.  相似文献   

13.
Highly ordered mesoporous silicon oxycarbide (SiOC) monoliths have been synthesized using liquid poly(hydridomethylsiloxane) (PHMS) as starting preceramic polymer and mesoporous carbon CMK-3 as direct template. Monolithic SiOC-carbon composites were generated via nanocasting of PHMS into CMK-3, pressing without any additive, cross-linking at 150 °C under humid air and subsequent thermolysis at 1000 or 1200 °C under argon atmosphere. The carbon template was finally removed by the thermal treatment at 1000 °C in an ammonia atmosphere, as a result of the generation of monolithic SiOC ceramics with ordered mesoporous structures. The products were characterized by scanning electron and transmission electron microscopes, X-ray diffraction, Fourier transformation infrared spectrometer, X-ray photoelectron spectroscope and nitrogen absorption-desorption analyzer. The as-prepared SiOC monoliths exhibited crack-free, ordered 2-dimentional hexagonal p6mm symmetry with high specific surface areas. With increasing the calcination temperature, the ordered mesoporous structure was still remained and the specific surface area just had a slight reduction from 616 to 602 m2 g−1. Moreover, the porous SiOC monoliths possessed good compression strengths and anti-oxidation properties.  相似文献   

14.
This review paper summarizes recent advances in self-assembly of complex polymers, focusing on three characteristic polymeric systems. The first is star-branched polymers of the ABC type, the second one consists of multiblock terpolymers with different chain lengths, while the third comprises supramacromolecular assembly systems with hydrogen and ionic bonding interactions between different polymer species. A quasicrystalline tiling structure with mesoscopic length scale has been found for the first star polymer system as well as the periodic Archimedean tiling structures, and moreover three-dimensional Zincblende network structure has been discovered. Furthermore the hierarchical structures having two length scales have been also found for the ABC star molecules whose chain length ratios, that is, A/B and/or A/C are larger than approximately five. Hierarchical structures with double periodicity have been observed for the hexablock and undecablock terpolymers and it has been revealed that their morphology changes systematically depending on composition of polymeric species. Poly(4-hydroxystyrene) (H) homopolymer was found to be dissolved into microdomain of poly(2-vinylpyridine) formed by poly(styrene-b-2-vinylpyridine) due to hydrogen bonding interaction, resulting in the origin of morphological transitions depending on the composition of H homopolymer added. Hierarchical structures possessing double periodicity have been found for poly(isoprene-b-2-vinylpyridine)/poly(styrene-b-4-hydroxystyrene) blends depending on both volume fractions of component polymers and blend ratio. Blends of different homopolymers with several complementary nucleotides or acid/base moieties on chain ends have been confirmed to show nanophase-separated structures as a result of successful formation of “supramacromolecules”.  相似文献   

15.
Surface molecularly imprinted (MIP) poly[N‐(2‐hydroxypropyl) methacrylamide] [poly(HPMA)] films were prepared via interface‐mediated reversible addition‐fragmentation chain transfer (RAFT) polymerization from 4‐cyano‐4‐(propylsulfanylthiocarbonyl) sulfanyl pentanoic acid immobilized silicon substrate using N‐(2‐hydroxypropyl) methacrylamide as the functional monomer, N,N′‐methylene(bis)acrylamide as the crosslinking agent, and ibuprofen as the template molecule. The highly crosslinked MIP layer (~12 nm) was homogeneously grafted onto the silicon surface, which favors fast mass transfer and rapid binding kinetics. Binding capacities and adsorption parameters of the MIP poly(HPMA) films were calculated from the root‐mean‐square roughness data obtained by atomic force microscopy measurements using the Luzinov and Langmuir equations adopted for this study. The target binding assays demonstrate the desirable binding capacity and imprinting efficiency of the MIP poly(HPMA) films. Meanwhile, the computational optimization and energy calculations showed the formation of the self‐assembly of monomer and template molecule via noncovalent interactions that leads to a 1:4 molecular complex between ibuprofen and N‐(2‐hydroxypropyl) methacrylamide. This study provides a versatile approach to the quantitative determination of low‐molecular‐weight biomolecules on surface‐imprinted polymers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45707.  相似文献   

16.
On the basis of the non‐covalent interaction between template and monomer, porous molecularly imprinted polymers (MIPs) were synthesized by a thermal‐initiated polymerization method using huperzine A as template, acrylamide, or methacrylic acid as function monomer, ethylene glycol dimethacrylate as cross‐linking agent. The interaction between template and functional monomers was studied by UV spectrophotometry, which showed a formation of huperzine A‐monomer complexes with stoichiometric ratio of 1 : 2 in the pre‐polymerized systems. The resultant MIP particles were tested in the equilibrium binding experiment to analyze their adsorption ability to huperzine A, and were characterized by Fourier Transform Infrared (FTIR) study. The recognition properties of MIP were estimated in solid‐phase extraction by selecting four compounds (isolated from the Chinese herb Huperzia serrata) as substrates, and were compared with and prior to those of the NIP. High affinity and adsorption of MIP1 which was prepared in chloroform with huperzine A as imprinted molecule, and acrylamide (AM) as functional monomer, made an attractive application of MIP1 in separation processes. In final, using MIP1 solid‐phase extraction micro‐column, huperzine A was enriched and separated from the real extraction sample of Huperzia serrata. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Eight molecularly imprinted polymers (MIP1–MIP8) were synthesized with different functional monomers and porogens using 3,4‐dihydroxyphenylacetic acid (DOPAC) as a template. Thermal, radical bulk polymerization was employed in the presence of ethylene glycol dimethacrylate as a cross‐linker. A computational analysis indicated that complexes with four molecules of 4‐vinylpyridine, 1‐vinylimidazole and acrylonitrile had high positive enthalpies of formation. The polymers synthesized with these monomers showed an imprinting factor below 1. Polymer MIP8 synthesized with allylamine as the functional monomer, with the highest energy of interaction with DOPAC, was characterized by the highest imprinting factor equal to 1.91. Examination of the binding ability of DOPAC and a group of structurally related compounds showed that the strong interactions between amine groups in the polymer and carboxylic groups in the analyte governed the recognition mechanism. The Langmuir adsorption model and the pseudo‐second‐order mechanism properly evaluated the MIP8 and non‐imprinted polymer 8 adsorption characteristics. Scatchard analysis revealed that MIP8 had two classes of heterogeneous binding sites with Kd(1) = 0.12 µmol L?1 and Kd(2) = 1.46 µmol L?1. Finally, the potential application of MIP8 for separation of DOPAC was demonstrated. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
This work reports a novel strategy to prepare affinity composite membranes using supercritical fluid technology. By blending molecularly imprinted polymeric particles with PMMA, a porous hybrid structure with affinity to the template molecule, bisphenol A, was prepared using a supercritical carbon dioxide (scCO2)-assisted method. Membranes were characterized in terms of morphology, mechanical performance and transport properties. The ability of the polymers and hybrid membranes to adsorb bisphenol A was tested in aqueous solutions and fitted to a linearized Langmuir equation, showing that adsorption takes place at homogeneous affinity binding sites within the imprinted surface. Filtration experiments showed that the imprinted hybrid membrane was able to adsorb higher amounts of template even in non-equilibrium dynamic binding conditions. The hybridization of the PMMA membrane herein reported conveys two important improvements over neat PMMA membrane: it introduced molecular affinity towards the template molecule and significantly increased the permeability of the porous structures, which are key parameters in processes that involve membranes. This technique could expand the applications of polymeric beads powders and enhance the efficiency of the membrane's transport properties. Our work presents a new method to confer affinity to a porous structure by immobilization of imprinted polymers, combining polymer synthesis and membrane formation using supercritical fluid technology.  相似文献   

19.
Baohui Zhao  Yan Lu  Zelin Liu 《Polymer》2005,46(22):9508-9513
In this paper, well-ordered macroporous membranes were fabricated from random poly(styrene-co-acrylonitrile) using tetrahydrofuran as solvent by the breath figure method. Influencing factors were investigated systematically including the relative humidity of atmosphere, the concentration of polymer solutions and the temperature. The pore size and the patterns were affected by these factors. The mechanism of pattern formation was also discussed.  相似文献   

20.
Kejian Bian 《Polymer》2006,47(16):5744-5753
2-(Dimethylamino)ethyl acrylate (DMAEA) was grafted from the surface of alkoxyamine-functionalized crosslinked poly(styrene-co-chloromethylstyrene) microspheres by nitroxide-mediated radical polymerization (NMRP). Latex particles (∼60 nm diameter) bearing chloromethyl groups were synthesized by emulsion polymerization. N-tert-butyl-N-(1-diethyl phosphono-2,2-dimethylpropyl)nitroxide (SG1) was then immobilized on the particle surface. Microspheres grafted with the homopolymer pDMAEA, as well as block copolymers poly(styrene-b-DMAEA) and poly(butyl acrylate-b-DMAEA) were prepared by surface-initiated NMRP in N,N-dimethylformamide at 112 °C, with the addition of free SG1 to ensure that control is maintained. Particle size increases with number average molecular weight (Mn) of untethered polymers. The polymerizations exhibit linear first order kinetic plots and slight curvature of evolution of Mn with conversion. The functional microspheres were analyzed by infrared spectroscopy, transmission electron microscopy and thermal analysis, as well as their dispersibility in water; the results support the formation of surface-grafted pDMAEA on the microspheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号