首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
It is known that the controllable system x′ = Bx + Du, where the x is the n-dimensional vector, can be transferred from an arbitrary initial state x(0) = x 0 to an arbitrary finite state x(T) = x T by the control function u(t) in the form of the polynomial in degrees t. In this work, the minimum degree of the polynomial is revised: it is equal to 2p + 1, where the number (p ? 1) is a minimum number of matrices in the controllability matrix (Kalman criterion), whose rank is equal to n. A simpler and a more natural algorithm is obtained, which first brings to the discovery of coefficients of a certain polynomial from the system of algebraic equations with the Wronskian and then, with the aid of differentiation, to the construction of functions of state and control.  相似文献   

2.
We study the quantity p(n, k, t1, t2) equal to the maximum number of edges in a k-uniform hypergraph having the property that all cardinalities of pairwise intersections of edges lie in the interval [t1, t2]. We present previously known upper and lower bounds on this quantity and analyze their interrelations. We obtain new bounds on p(n, k, t1, t2) and consider their possible applications in combinatorial geometry problems. For some values of the parameters we explicitly evaluate the quantity in question. We also give a new bound on the size of a constant-weight error-correcting code.  相似文献   

3.
Recall that Lebesgue’s singular function L(t) is defined as the unique solution to the equation L(t) = qL(2t) + pL(2t ? 1), where p, q > 0, q = 1 ? p, pq. The variables M n = ∫01t n dL(t), n = 0,1,… are called the moments of the function The principal result of this work is \({M_n} = {n^{{{\log }_2}p}}{e^{ - \tau (n)}}(1 + O({n^{ - 0.99}}))\), where the function τ(x) is periodic in log2x with the period 1 and is given as \(\tau (x) = \frac{1}{2}1np + \Gamma '(1)lo{g_2}p + \frac{1}{{1n2}}\frac{\partial }{{\partial z}}L{i_z}( - \frac{q}{p}){|_{z = 1}} + \frac{1}{{1n2}}\sum\nolimits_{k \ne 0} {\Gamma ({z_k})L{i_{{z_k} + 1}}( - \frac{q}{p})} {x^{ - {z_k}}}\), \({z_k} = \frac{{2\pi ik}}{{1n2}}\), k ≠ 0. The proof is based on poissonization and the Mellin transform.  相似文献   

4.
A Steiner triple system of order n (for short, STS(n)) is a system of three-element blocks (triples) of elements of an n-set such that each unordered pair of elements occurs in precisely one triple. Assign to each triple (i,j,k) ? STS(n) a topological triangle with vertices i, j, and k. Gluing together like sides of the triangles that correspond to a pair of disjoint STS(n) of a special form yields a black-and-white tiling of some closed surface. For each n ≡ 3 (mod 6) we prove that there exist nonisomorphic tilings of nonorientable surfaces by pairs of Steiner triple systems of order n. We also show that for half of the values n ≡ 1 (mod 6) there are nonisomorphic tilings of nonorientable closed surfaces.  相似文献   

5.
Consider a random k-conjunctive normal form Fk(n, rn) with n variables and rn clauses. We prove that if the probability that the formula Fk(n, rn) is satisfiable tends to 0 as n→∞, then r ? 2.83, 8.09, 18.91, 40.81, and 84.87, for k = 3, 4, 5, 6, and 7, respectively.  相似文献   

6.
The ambiguity of a nondeterministic finite automaton (NFA) N for input size n is the maximal number of accepting computations of N for inputs of size n. For every natural number k we construct a family \((L_{r}^{k}\;|\;r\in \mathbb{N})\) of languages which can be recognized by NFA’s with size k?poly(r) and ambiguity O(n k ), but \(L_{r}^{k}\) has only NFA’s with size exponential in r, if ambiguity o(n k ) is required. In particular, a hierarchy for polynomial ambiguity is obtained, solving a long standing open problem (Ravikumar and Ibarra, SIAM J. Comput. 19:1263–1282, 1989, Leung, SIAM J. Comput. 27:1073–1082, 1998).  相似文献   

7.
The aim of the present paper is to analyze the behavior of Fiedler companion matrices in the polynomial root-finding problem from the point of view of conditioning of eigenvalues. More precisely, we compare: (a) the condition number of a given root \({\lambda }\) of a monic polynomial p(z) with the condition number of \({\lambda }\) as an eigenvalue of any Fiedler matrix of p(z), (b) the condition number of \({\lambda }\) as an eigenvalue of an arbitrary Fiedler matrix with the condition number of \({\lambda }\) as an eigenvalue of the classical Frobenius companion matrices, and (c) the pseudozero sets of p(z) and the pseudospectra of any Fiedler matrix of p(z). We prove that, if the coefficients of the polynomial p(z) are not too large and not all close to zero, then the conditioning of any root \({\lambda }\) of p(z) is similar to the conditioning of \({\lambda }\) as an eigenvalue of any Fiedler matrix of p(z). On the contrary, when p(z) has some large coefficients, or they are all close to zero, the conditioning of \({\lambda }\) as an eigenvalue of any Fiedler matrix can be arbitrarily much larger than its conditioning as a root of p(z) and, moreover, when p(z) has some large coefficients there can be two different Fiedler matrices such that the ratio between the condition numbers of \({\lambda }\) as an eigenvalue of these two matrices can be arbitrarily large. Finally, we relate asymptotically the pseudozero sets of p(z) with the pseudospectra of any given Fiedler matrix of p(z), and the pseudospectra of any two Fiedler matrices of p(z).  相似文献   

8.
A new representation is proved of the solutions of initial boundary value problems for the equation of the form u xx (x, t) + r(x)u x (x, t) ? q(x)u(x, t) = u tt (x, t) + μ(x)u t (x, t) in the section (under boundary conditions of the 1st, 2nd, or 3rd type in any combination). This representation has the form of the Riemann integral dependent on the x and t over the given section.  相似文献   

9.
Tracking frequent items (also called heavy hitters) is one of the most fundamental queries in real-time data due to its wide applications, such as logistics monitoring, association rule based analysis, etc. Recently, with the growing popularity of Internet of Things (IoT) and pervasive computing, a large amount of real-time data is usually collected from multiple sources in a distributed environment. Unfortunately, data collected from each source is often uncertain due to various factors: imprecise reading, data integration from multiple sources (or versions), transmission errors, etc. In addition, due to network delay and limited by the economic budget associated with large-scale data communication over a distributed network, an essential problem is to track the global frequent items from all distributed uncertain data sites with the minimum communication cost. In this paper, we focus on the problem of tracking distributed probabilistic frequent items (TDPF). Specifically, given k distributed sites S = {S 1, … , S k }, each of which is associated with an uncertain database \(\mathcal {D}_{i}\) of size n i , a centralized server (or called a coordinator) H, a minimum support ratio r, and a probabilistic threshold t, we are required to find a set of items with minimum communication cost, each item X of which satisfies P r(s u p(X) ≥ r × N) > t, where s u p(X) is a random variable to describe the support of X and \(N={\sum }_{i=1}^{k}n_{i}\). In order to reduce the communication cost, we propose a local threshold-based deterministic algorithm and a sketch-based sampling approximate algorithm, respectively. The effectiveness and efficiency of the proposed algorithms are verified with extensive experiments on both real and synthetic uncertain datasets.  相似文献   

10.
We analyze the asymptotic behavior of the j-independence number of a random k-uniform hypergraph H(n, k, p) in the binomial model. We prove that in the strongly sparse case, i.e., where \(p = c/\left( \begin{gathered} n - 1 \hfill \\ k - 1 \hfill \\ \end{gathered} \right)\) for a positive constant 0 < c ≤ 1/(k ? 1), there exists a constant γ(k, j, c) > 0 such that the j-independence number α j (H(n, k, p)) obeys the law of large numbers \(\frac{{{\alpha _j}\left( {H\left( {n,k,p} \right)} \right)}}{n}\xrightarrow{P}\gamma \left( {k,j,c} \right)asn \to + \infty \) Moreover, we explicitly present γ(k, j, c) as a function of a solution of some transcendental equation.  相似文献   

11.
Let Z/(pe) be the integer residue ring modulo pe with p an odd prime and e ≥ 2. We consider the suniform property of compressing sequences derived from primitive sequences over Z/(pe). We give necessary and sufficient conditions for two compressing sequences to be s-uniform with α provided that the compressing map is of the form ?(x0, x1,...,xe?1) = g(xe?1) + η(x0, x1,..., xe?2), where g(xe?1) is a permutation polynomial over Z/(p) and η is an (e ? 1)-variable polynomial over Z/(p).  相似文献   

12.
We consider a class of graphs G(n, r, s) = (V (n, r),E(n, r, s)) defined as follows:
$$V(n,r) = \{ x = ({x_{1,}},{x_2}...{x_n}):{x_i} \in \{ 0,1\} ,{x_{1,}} + {x_2} + ... + {x_n} = r\} ,E(n,r,s) = \{ \{ x,y\} :(x,y) = s\} $$
where (x, y) is the Euclidean scalar product. We study random subgraphs G(G(n, r, s), p) with edges independently chosen from the set E(n, r, s) with probability p each. We find nontrivial lower and upper bounds on the clique number of such graphs.
  相似文献   

13.
In its simplest form, the longest common substring problem is to find a longest substring common to two or multiple strings. Using (generalized) suffix trees, this problem can be solved in linear time and space. A first generalization is the k -common substring problem: Given m strings of total length n, for all k with 2≤km simultaneously find a longest substring common to at least k of the strings. It is known that the k-common substring problem can also be solved in O(n) time (Hui in Proc. 3rd Annual Symposium on Combinatorial Pattern Matching, volume 644 of Lecture Notes in Computer Science, pp. 230–243, Springer, Berlin, 1992). A further generalization is the k -common repeated substring problem: Given m strings T (1),T (2),…,T (m) of total length n and m positive integers x 1,…,x m , for all k with 1≤km simultaneously find a longest string ω for which there are at least k strings \(T^{(i_{1})},T^{(i_{2})},\ldots,T^{(i_{k})}\) (1≤i 1<i 2<???<i k m) such that ω occurs at least \(x_{i_{j}}\) times in \(T^{(i_{j})}\) for each j with 1≤jk. (For x 1=???=x m =1, we have the k-common substring problem.) In this paper, we present the first O(n) time algorithm for the k-common repeated substring problem. Our solution is based on a new linear time algorithm for the k-common substring problem.  相似文献   

14.
We assume that a transmitted signal is of the form S(t)f(t), where f(t) is a known function vanishing at some points of the observation interval and S(t) is a function of a known smoothness class. The signal is transmitted over a communication channel with additive white Gaussian noise of small intensity ?. For this model, we construct an estimator for S(t) which is optimal with respect to the rate of convergence of the risk to zero as ? → 0.  相似文献   

15.
The (s + t + 1)-dimensional exchanged crossed cube, denoted as ECQ(s, t), combines the strong points of the exchanged hypercube and the crossed cube. It has been proven that ECQ(s, t) has more attractive properties than other variations of the fundamental hypercube in terms of fewer edges, lower cost factor and smaller diameter. In this paper, we study the embedding of paths of distinct lengths between any two different vertices in ECQ(s, t). We prove the result in ECQ(s, t): if s ≥ 3, t ≥ 3, for any two different vertices, all paths whose lengths are between \( \max \left\{9,\left\lceil \frac{s+1}{2}\right\rceil +\left\lceil \frac{t+1}{2}\right\rceil +4\right\} \) and 2 s+t+1 ? 1 can be embedded between the two vertices with dilation 1. Note that the diameter of ECQ(s, t) is \( \left\lceil \frac{s+1}{2}\right\rceil +\left\lceil \frac{t+1}{2}\right\rceil +2 \). The obtained result is optimal in the sense that the dilations of path embeddings are all 1. The result reveals the fact that ECQ(s, t) preserves the path embedding capability to a large extent, while it only has about one half edges of CQ n .  相似文献   

16.
We introduce a construction of a set of code sequences {Cn(m) : n ≥ 1, m ≥ 1} with memory order m and code length N(n). {Cn(m)} is a generalization of polar codes presented by Ar?kan in [1], where the encoder mapping with length N(n) is obtained recursively from the encoder mappings with lengths N(n ? 1) and N(n ? m), and {Cn(m)} coincides with the original polar codes when m = 1. We show that {Cn(m)} achieves the symmetric capacity I(W) of an arbitrary binary-input, discrete-output memoryless channel W for any fixed m. We also obtain an upper bound on the probability of block-decoding error Pe of {Cn(m)} and show that \({P_e} = O({2^{ - {N^\beta }}})\) is achievable for β < 1/[1+m(? ? 1)], where ? ∈ (1, 2] is the largest real root of the polynomial F(m, ρ) = ρm ? ρm ? 1 ? 1. The encoding and decoding complexities of {Cn(m)} decrease with increasing m, which proves the existence of new polar coding schemes that have lower complexity than Ar?kan’s construction.  相似文献   

17.
A coloring of a graph is convex if it induces a partition of the vertices into connected subgraphs. Besides being an interesting property from a theoretical point of view, tests for convexity have applications in various areas involving large graphs. We study the important subcase of testing for convexity in trees. This problem is linked, among other possible applications, with the study of phylogenetic trees, which are central in genetic research, and are used in linguistics and other areas. We give a 1-sided, non-adaptive, distribution-free ε-test for the convexity of tree colorings. The query complexity of our test is O(k/ε), where k is the number of colors, and the additional computational complexity is O(n). On the other hand, we prove a lower bound of \(\Omega(\sqrt{k/\epsilon})\) on the query complexity of tests for convexity in the standard model, which applies even for (unweighted) paths. We also consider whether the dependency on k can be reduced in some cases, and provide an alternative testing algorithm for the case of paths. Then we investigate a variant of convexity, namely quasi-convexity, in which all but one of the colors are required to induce connected components. For this problem we provide a 1-sided, non-adaptive ε-test with query complexity O(k/ε 2) and time complexity O(kn/ε). For both our convexity and quasi-convexity tests, we show that, assuming that a query takes constant time, the time complexity can be reduced to a constant independent of n if we allow a preprocessing stage of time O(n) and O(n 2), respectively. Finally, we show how to test for a variation of convexity and quasi-convexity where the maximum number of connectivity classes of each color is allowed to be a constant value other than 1.  相似文献   

18.
We consider the estimation problem for an unknown vector β ∈ Rp in a linear model Y = + σξ, where ξ ∈ Rn is a standard discrete white Gaussian noise and X is a known n × p matrix with np. It is assumed that p is large and X is an ill-conditioned matrix. To estimate β in this situation, we use a family of spectral regularizations of the maximum likelihood method βα(Y) = H α(X T X) β ?(Y), α ∈ R+, where β ?(Y) is the maximum likelihood estimate for β and {H α(·): R+ → [0, 1], α ∈ R+} is a given ordered family of functions indexed by a regularization parameter α. The final estimate for β is constructed as a convex combination (in α) of the estimates βα(Y) with weights chosen based on the observations Y. We present inequalities for large deviations of the norm of the prediction error of this method.  相似文献   

19.
We consider the k-Server problem under the advice model of computation when the underlying metric space is sparse. On one side, we introduce Θ(1)-competitive algorithms for a wide range of sparse graphs. These algorithms require advice of (almost) linear size. We show that for graphs of size N and treewidth α, there is an online algorithm that receives O (n(log α + log log N))* bits of advice and optimally serves any sequence of length n. We also prove that if a graph admits a system of μ collective tree (q, r)-spanners, then there is a (q + r)-competitive algorithm which requires O (n(log μ + log log N)) bits of advice. Among other results, this gives a 3-competitive algorithm for planar graphs, when provided with O (n log log N) bits of advice. On the other side, we prove that advice of size Ω(n) is required to obtain a 1-competitive algorithm for sequences of length n even for the 2-server problem on a path metric of size N ≥ 3. Through another lower bound argument, we show that at least \(\frac {n}{2}(\log \alpha - 1.22)\) bits of advice is required to obtain an optimal solution for metric spaces of treewidth α, where 4 ≤ α < 2k.  相似文献   

20.
A (t, n) threshold quantum secret sharing (QSS) is proposed based on a single d-level quantum system. It enables the (t, n) threshold structure based on Shamir’s secret sharing and simply requires sequential communication in d-level quantum system to recover secret. Besides, the scheme provides a verification mechanism which employs an additional qudit to detect cheats and eavesdropping during secret reconstruction and allows a participant to use the share repeatedly. Analyses show that the proposed scheme is resistant to typical attacks. Moreover, the scheme is scalable in participant number and easier to realize compared to related schemes. More generally, our scheme also presents a generic method to construct new (t, n) threshold QSS schemes based on d-level quantum system from other classical threshold secret sharing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号