首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
轮式移动机械臂的建模与仿真研究   总被引:4,自引:0,他引:4  
移动机械臂系统一般由移动平台和机器臂组成,它既具有机器臂的操作灵活性,又具有移动机器人的可移动性,因此其应用范围要比单个系统宽得多。这篇文章主要研究了由非完整移动平台和完整机械臂组成的轮式移动机械臂系统的建模、跟踪控制及仿真问题。首先。利用拉格朗日动力学方程和非完整动力学罗兹方程建立了移动机械臂系统的精确数学模型;然后。利用非线性反馈将系统解耦。采用类PD控制器进行控制。在考虑了非完整约束及移动平台和机械臂的动态交互影响情况下,该控制算法保证系统同时跟踪给定的终端执行器和平台轨迹;最后,使用Maflah6.5对系统进行了仿真研究,仿真结果表明了其数学模型及控制方法的正确有效性。  相似文献   

2.
This paper presents methodologies for dynamic modeling and trajectory tracking of a nonholonomic wheeled mobile manipulator (WMM) with dual arms. The complete dynamic model of such a manipulator is easily established using the Lagrange’s equation and MATHEMATICA. The structural properties of the overall system along with its subsystems are also well investigated and then exploited in further controller synthesis. The derived model is shown valid by reducing it to agree well with the mobile platform model. In order to solve the path tracking control problem of the wheeled mobile manipulator, a novel kinematic control scheme is proposed to deal with the nonholonomic constraints. With the backstepping technique and the filtered-error method, the nonlinear tracking control laws for the mobile manipulator system are constructed based on the Lyapunov stability theory. The proposed control scheme not only achieves simultaneous trajectory and velocity tracking, but also compensates for the dynamic interactions caused by the motions of the mobile platform and the two onboard manipulators. Simulation results are performed to illustrate the efficacy of the proposed control strategy.  相似文献   

3.
We present a rollover prevention control law for wheeled mobile manipulators based on the invariance control framework, and that makes use of recursively calculated analytic gradients of the mobile manipulator’s zero moment point. Our controller relaxes many of the assumptions made in existing approaches, and enhances robustness through the use of exact gradient information. Numerical experiments demonstrate the improved performance of our controller vis-à-vis existing rollover prevention schemes.  相似文献   

4.
This work proposes application of a state-dependent Riccati equation (SDRE) controller for wheeled mobile cooperative manipulators. Implementation of the SDRE on a wheeled mobile manipulator (WMM) considering holonomic and non-holonomic constraints is difficult and leads to instability of the system. The present study introduces a method of controlling the WMMs including: a general formulation, state-dependent coefficient parameterization, and control structure of the SDRE. Overcoming the problem of instability of the WMM resulted in control design for a system of cooperative manipulators mounted on a wheeled mobile platform. Optimal load distribution (OLD) was employed to distribute the load between the cooperative arms. The presence of obstacles and the probability of a collision between multiple robots in a workspace are the motivations behind employment of the artificial potential field (APF) approach. Two cooperative manipulators mounted on a mobile platform retrieved from Scout robot were modeled and simulated for situations such as controlling multiple mobile bases (collision avoidance), a cooperative system of manipulators, and moving obstacle avoidance. The OLD improved the load capacity, precision, and stability in motion of the cooperative system. Compatibility of the APF within the structure of the SDRE controller is another promising aspect of this research.  相似文献   

5.
针对带有执行机构饱和约束与外部干扰的轮式移动机器人,提出了一种基于T-S模糊模型的轨迹跟踪方法.利用机器人运动特性和参考轨迹建立轨迹跟踪的误差系统并将其作T-S模型描述.通过求解具有LMI约束的半定规划问题,对每个线性子系统单独设计满足控制约束与H∞性能约束的状态反馈控制器,并在PDC(动态平行分配补偿)设计框架下构建全局控制器,最后证明闭环系统的李雅普诺夫稳定性.仿真结果验证了该方法的有效性和可行性.  相似文献   

6.
文章在控制输入饱和约束条件下,以非完整移动机器人的运动学模型为对象,研究了移动机器人的轨迹跟踪问题.首先在参考轨迹处对运动学模型进行线性化得到移动机器人线性时变系统,证明了其能观性和能控性,在此基础上设计了饱和约束条件的分段线性二次型控制器(Piecewise Linear QuadraticRegulator,PLQR),并基于Lyapunov方法证明了其稳定性.在MATLAB软件平台下的仿真和实验结果表明,基于PLQR的轮式移动机器人对不同初始位姿及不同的参考轨迹都有较好的跟踪效果,且能够避免控制律跳变现象,满足饱和约束条件.  相似文献   

7.
In this paper, we propose a virtual joint method that better utilizes quasi-velocities for the kinematic modeling of wheeled mobile manipulators. By identifying quasi-velocities as motions of imaginary revolute and prismatic kinematic pairs, our method enables one to regard a mobile manipulator as an ordinary articulated manipulator for the purposes of velocity analysis. We also propose an inverse kinematic scheme for the mobile manipulators along the line with the virtual joint based kinematic framework. Details are worked out for mobile manipulators with representative differential-drive and car-like mobile platforms.  相似文献   

8.
针对存在外部干扰的轮式移动机器人轨迹跟踪控制问题,提出一种固定时间轨迹跟踪控制方案.首先,对于轮式移动机器人的运动学误差模型,基于一种新颖的积分滑模面设计固定时间运动学速度控制器,使跟踪误差在固定时间收敛到原点所在的邻域内;其次,对于轮式移动机器人的动力学模型,设计固定时间干扰观测器对外部干扰信息进行估计,提出一种固定时间轨迹跟踪控制器,以确保动力学系统的固定时间稳定性,实现轮式移动机器人的高精度轨迹跟踪控制;最后,通过仿真结果验证所设计的轨迹跟踪控制方案的有效性.  相似文献   

9.
侯明冬  王印松 《控制与决策》2020,35(6):1353-1360
针对有输入饱和约束的轮式移动机器人(WMR)的轨迹跟踪问题,提出一种抗饱和无模型自适应积分终端滑模控制方案.该方案基于紧格式动态线性化技术,构建WMR系统的在线数据驱动模型.在积分终端滑模控制器设计过程中,引入动态抗饱和补偿器,以解决WMR系统轨迹跟踪过程中执行器饱和问题.控制器设计仅利用控制系统的输入输出数据,与WMR系统模型信息无关.因此,针对不同类型的WMR系统,该方案均可实现.最后,通过仿真实验将所提出的方法与PID方法的控制效果进行对比,仿真结果表明,所提出的控制算法的跟踪误差更小且响应速度更快.  相似文献   

10.
基于互联网技术的远程机器人控制器设计   总被引:5,自引:1,他引:5  
采取利用互联网、IEEE802.11x无线局域网及移动电话网的方法,为轮式移动机器人设计具有视觉功能的远程无线控制器,实现远程无线控制轮式移动机器人的控制器软件、硬件的基本结构和设计方法。设计的两种嵌入式控制器分别在局域网和日本的3G无线移动电话网上进行了实验,在具有视觉功能的轮式移动机器人上实现了利用浏览器通过网络对轮式移动机器人进行远程无线操作控制,并在远程操作计算机上通过网络利用浏览器获取机器人实时视觉图像。  相似文献   

11.
In this paper, a new method is proposed to solve a nonlinear optimal control problem and determine the Dynamic Load-Carrying Capacity (DLCC) of fixed and mobile manipulators in point-to-point motion. Solution methods for designing nonlinear optimal controller in closed loop form are usually based on indirect methods, but the proposed method is a combination of direct and indirect methods. The optimal control law with state feedback form, for nonlinear dynamic systems, is given by the solution to the nonlinear Hamilton–Jacobi–Bellman (HJB) equation. The Galerkin procedure and a nonlinear optimization algorithm are used to solve this equation numerically. Another innovation of this paper is optimal trajectory planning, which is done simultaneously with the controller design procedure. Finally, a new algorithm is developed to find DLCC of manipulators and the related optimal trajectory using proposed method. The validity of the method is demonstrated via simulation and experimental tests for a fixed manipulator and two-link wheeled mobile manipulator named Scout.  相似文献   

12.
This paper addresses the trajectory tracking control problem of nonholonomic robotic systems in the presence of modeling uncertainties. A tracking controller is proposed such that it combines the inverse dynamics control technique and an adaptive robust PID control strategy to preserve robustness to both parametric and nonparametric uncertainties. A SPR-Lypunov stability analysis demonstrates that tracking errors are uniformly ultimately bounded (UUB) and exponentially converge to a small ball containing the origin. The proposed inverse dynamics tracking controller is successfully applied to a nonholonomic wheeled mobile robot (WMR) and experimental results are presented to validate the effectiveness of the proposed controller.  相似文献   

13.
A novel unified control approach is proposed to simultaneously solve tracking and obstacle avoidance problems of a wheeled mobile robot (WMR) with unknown wheeled slipping. The longitudinal and lateral slipping are processed as three time-varying parameters and an Adaptive Unscented Kalman Filter (AUKF) is designed to estimate the slipping parameters online More specifically, an adaptive adjustment of the noise covariances in the estimation process is implemented using a technique of covariance matching in the Unscented Kalman Filter (UKF) context. A stable unified controller is applied to simultaneously handle tracking and obstacle avoidance for this WMR system to compensate for the unknown slipping effect. Applying Lyapunov stability theory, it is proved that tracking errors of the closed-loop system are asymptotically convergent regardless of unknown slipping, the tracking errors converge to the zero outside the obstacle detection region and obstacle avoidance is guaranteed inside the obstacle detection region. The effectiveness and robustness of the proposed control method are validated through simulation and experimental results.  相似文献   

14.
A general mobile modular manipulator can be defined as a m-wheeled holonomic/nonholonomic mobile platform combining with a n-degree of freedom modular manipulator. This paper presents a sliding mode adaptive neural-network controller for trajectory following of nonholonomic mobile modular manipulators in task space. Dynamic model for the entire mobile modular manipulator is established in consideration of nonholonomic constraints and the interactive motions between the mobile platform and the onboard modular manipulator. Multilayered perceptrons (MLP) are used as estimators to approximate the dynamic model of the mobile modular manipulator. Sliding mode control and direct adaptive technique are combined together to suppress bounded disturbances and modeling errors caused by parameter uncertainties. Simulations are performed to demonstrate that the dynamic modeling method is valid and the controller design algorithm is effective.  相似文献   

15.
As a major representative nonholonomic system, wheeled mobile robot (WMR) is often used to travel across off-road environments that could be unstructured environments. Slippage often occurs when WMR moves in slopes or uneven terrain, and the slippage generates large accumulated position errors in the vehicle, compared with conventional wheeled mobile robots. An estimation of the wheel slip ratio is essential to improve the accuracy of locomotion control. In this paper, we propose an improved adaptive controller to allow WMR to track the desired trajectory under unknown longitudinal slip, where the stabilisation of the closed-loop tracking system is guaranteed by the Lyapunov theory. All system states use neural network online weight tuning algorithms, which ensure small tracking errors and no loss of stability in robot motion with bounded input signals. We demonstrate superior tracking results using the proposed control method in various Matlab simulations.  相似文献   

16.
The aim of this paper is to reverse an assembly line using a mobile platform equipped with a manipulator. By reversibility we mean that the line is able to perform disassembly. For this purpose, an assembly/disassembly line balancing (A/DLB) and a synchronised hybrid Petri nets (SHPN) model will be used to model and control an assembly/disassembly mechatronics line (A/DML), with a fixed number of workstations, served by a wheeled mobile robot (WMR) equipped with a robotic manipulator (RM). The SHPN model is a hybrid type, where A/DML is the discrete part, and WMR with RM is the continuous part. Moreover, the model operates in synchronised mode with signals from sensors. Disassembly starts after the assembly process and after the assembled piece fails the quality test, in order to recover the parts. The WMR with RM is used only during disassembly, to transport the parts from the disassembling locations to the storage locations. Using these models and a LabView platform, a real-time control structure has been designed and implemented, allowing automated assembly and disassembly, where the latter is assisted by a mobile platform equipped with a manipulator.  相似文献   

17.
针对具有未知的滑动与打滑的轮式移动机器人(WMR),提出了一种基于自抗扰思想的跟踪控制策略.首先建立了滑动与打滑条件下的轮式移动机器人动力学模型.其次,由反步法设计运动学控制器,基于模型设计线性扩张观测器和动力学控制器,并给出了控制器稳定性分析.最后与积分滑模控制进行了仿真对比,结果表明该控制方法的误差收敛速度更快.观测器能够精确估计滑动与打滑及动力学不确定性对机器人的扰动,提高了轮式移动机器人轨迹跟踪的鲁棒性.  相似文献   

18.

轮式移动机器人现有的避障控制方法大多需要在避障过程中进行减速处理, 会影响移动效率. 鉴于此, 将生存理论应用于轮式移动机器人的反应式避障控制. 分析非完整约束轮式机器人的仿射非线性系统模型和约束条件, 利用弹性边界升维和控制模型退化的方法给出系统的生存性设计, 并利用最优化方法得出机器人高速避障控制器. 最后通过仿真实验, 表明了轮式机器人高速避障控制的有效性.

  相似文献   

19.
In this paper, we deal with nonholonomic wheeled mobile robots (WMR) modeled as uncertain nonlinear systems. Sources of uncertainties can be due to erroneous estimation of mass, inertia, and center of gravity and due to payload time‐varying. They also can be considered as external disturbances generated from unstructured environments. We are proposing the use of a robust linear quadratic regulator (RLQR) to deal with tracking problems of WMR. In order to guarantee the effectiveness of this control approach, the robot posture is measured through a high‐precision motion capture system. This RLQR encompasses in a unified framework all state and output uncertain parameters of the system and does not depend on any auxiliary parameter to be tuned. It is useful to be used in online applications. Experimental results are presented with a comparative study among the R‐LQR, the nonlinear control via game theory, and the standard proportional‐derivative controller plus computed torque (PD+CT).  相似文献   

20.
We study cooperative object manipulation control of rigid–flexible multibody systems in space. During such tasks, flexible members like solar panels may get vibrated. Which in turn may lead to some oscillatory disturbing forces on other subsystems and consequently produce errors in the motion of the end-effectors of the cooperative manipulating arms. Therefore, to design and develop capable model-based controllers for such complicated systems, deriving a dynamics model is required. However, due to practical limitations and real-time implementation, the system dynamics model should require low computations. So, first, to obtain a precise compact dynamics model, the rigid–flexible interactive dynamics modeling (RFIM) approach is briefly introduced. Using this approach, the system is virtually partitioned into two rigid and flexible portions, and a convenient model for control purposes is developed. Next, a fuzzy tuning manipulation control (FTMC) algorithm is developed for a simple conceptual model for cooperative object manipulation. In fact, a suitable setup is designed for practical implementation of this controller. After that, a wheeled mobile robot (WMR) system with flexible appendages is considered as a practical case that necessitates delicate force exertion by several end-effectors to move an object along a desired path. The WMR system contains two cooperative manipulators, appended with two flexible solar panels. To reveal the merits of the developed model-based controller, the maneuver is deliberately planned such that flexible modes of solar panels get stimulated due to arms motion. The obtained results show an effective performance of the proposed approach as will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号