首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquefied natural gas (LNG), mainly composed of methane, is in progress to substitute diesel fuel in heavy-duty marine engine for practical, economic, and environmental considerations. However, natural gas is relatively difficult to be ignited in a large bore combustion chamber. A combustion enhancement technique called pre-chamber turbulent jet ignition (TJI) can permit combustion and flame propagation in a large-bore volume. To investigate the effect of air-fuel equivalence ratio and pre-mixed pressure on pre-chamber TJI of methane/air mixtures with multiple orifices in a large bore volume, experimental tests and computational simulations were implemented to study the discharge of hot turbulent jets from six orifices of the pre-chamber. Different initial pressures and air-fuel equivalence ratios were considered to analyze the characteristics of TJI. The asymmetry of the turbulent jet actuated from six different orifices were found due to the asymmetric orientation of the spark plug, resulting in the inhomogeneous distribution of combustion in the constant volume chamber, which should be considered seriously in the marine engine design. Besides, as the premixed pressure increases, it has more effect on the flame propagation and plays a more important role, as it further increases.  相似文献   

2.
The pre-chamber spark ignition system is a promising advanced ignition system adopted for lean burn spark ignition engines as it enables stable combustion and enhances engine efficiency. The performance of the PCSI system is governed by the turbulent flame jet ejected from the pre-chamber, which is influenced by the pre-chamber geometrical parameters and the operating conditions. Hence, the current study aims to understand the effects of pre-chamber volume, nozzle hole diameter, equivalence ratio, and initial chamber pressure on the combustion and flame jet characteristics of hydrogen-air mixture in a passive PCSI system. Pre-chamber with different nozzle hole diameters (1 mm, 2 mm, 3 mm, and 4 mm) and volumes (2%, 4%, and 6% of the engine clearance volume) were selected and manufactured in-house. The experimental investigation of these pre-chamber configurations was carried out in a constant-volume combustion chamber with optical access. The flame development process was captured using a high-speed camera at a rate of 20000 fps, and the images were processed in MATLAB to obtain quantitative data. The combustion characteristics of hydrogen-air mixtures with the PCSI system improved when compared to the conventional SI system; however, the improvement was more significant for ultra-lean mixtures. Early start of combustion and shorter combustion duration were observed for PCSI – D2 and PCSI – D3 configurations, respectively and improved combustion and flame jet characteristics were also noted for these configurations. With the increase in pre-chamber volume, ignition energy associated with the flame jet increases, which reduces the combustion duration and the ignition lag.  相似文献   

3.
The pre-chamber sparkplug mode can increase the combustion velocity because it can induce the turbulent jet into the cylinder. Higher combustion velocity can increase the brake thermal efficiency and decrease the knock tendency for hydrogen engines. To explore the effect of pre-chamber sparkplug mode on the combustion characteristics of the hydrogen-air mixture, different equivalence ratios, initial pressures and temperatures were selected to study in a constant volume combustion chamber working with pre-chamber sparkplug mode and normal sparkplug mode. The results showed that the pre-chamber sparkplug mode can accelerate the combustion velocity, increase maximum combustion pressure and decrease the combustion duration at all initial conditions. The maximum combustion pressure of pre-chamber sparkplug mode occurred at the equivalence ratio of 1.0 while it occurred at the equivalence ratio of 1.2 with normal sparkplug mode, which means pre-chamber sparkplug mode can increase the higher brake thermal efficiency and power. The combustion intensity of pre-chamber sparkplug mode was bigger than 1 and the biggest value occurred at the equivalence ratio of 0.6. Moreover, the combustion intensity of pre-chamber sparkplug mode was higher with lean equivalence ratios than that of rich equivalence ratios. Increasing the initial pressure can increase maximum combustion pressure and combustion velocity obviously for pre-chamber sparkplug mode, which was different from the normal sparkplug mode. The initial temperatures had little impact on the combustion intensity. These results showed the pre-chamber sparkplug mode was more suitable to be used in the boosting hydrogen engines to improve the performance.  相似文献   

4.
基于光学定容燃烧弹试验平台,通过高速纹影摄像系统在相同甲烷燃料初始温度、压力及混合气浓度下,定量分析了不同结构预燃室湍流射流点火(turbulent jet ignition,TJI)的燃烧特性,包括火焰传播速度、火焰面积、火焰形态及燃烧压力等参数。研究结果表明,预燃室孔径越小,相同时间内火焰传播得越远,火焰传播速度和火焰面积增长速度越快,燃烧压力峰值越高。随着预燃室孔径减小,着火机理会由射流中带有火焰的火焰点火转变为火焰过孔时熄灭的喷射点火。喷射点火着火时刻延迟,初始火焰速度减慢,但燃烧压力峰值受影响不大。多级加速预燃室压力升高率与压力峰值与单孔预燃室相比变化不大。虽然火焰出口时速度较慢,但是火焰出口时刻提前且速度衰减较弱,因此多级加速预燃室火焰速度在短时间内超过单孔预燃室,并且压力和火焰面积也更早达到最大值。  相似文献   

5.
预燃室式天然气掺氢发动机燃烧及排放模拟   总被引:1,自引:0,他引:1  
为探索掺氢对预燃室式大功率中速天然气发动机燃烧和排放的影响,采用计算流体动力学耦合化学动力学方法,在一台6ACD320型天然气发动机上,对氢气体积分数为0~30%的天然气-氢气混合燃料的燃烧过程进行了数值模拟.结果表明:在天然气中掺氢促使缸内产生了更多的O、OH等活性自由基,从而加速了缸内火焰传播,发动机的指示燃气消耗率下降、指示热效率提高,CO、THC和非甲烷碳氢化合物(NHMC)排放下降,NOx排放上升.对于预燃室式发动机,掺氢增加缸内火焰传播速率的效应主要体现在燃烧过程的后半段,而前半段燃烧过程中,预燃室射流对缸内混合气的湍流激扰效应对缸内湍流燃烧速率起着主导性的作用.综合比较,采用10%的掺氢比对发动机性能和排放较为有利.  相似文献   

6.
Ammonia (NH3) fuel is a promising hydrogen carrier for engine carbon neutrality. However, the high auto-ignition temperature and low flame velocity of NH3 substantially restrain its application in internal combustion engines (ICE). In previous works, hydrogen and pre-chamber turbulent jet ignition (TJI) have shown the potential abilities to solve critical combustion issues. Therefore, in this work, a concept of reactivity controlled turbulent jet ignition (RCTJI) for ammonia engines is proposed, where a newly designed air-assisted pre-chamber system with scavenging and hydrogen injection is adopted.  相似文献   

7.
Natural gas/hydrogen blends (NGHB) fuel is considered as one of the ideal alternative fuels for the rotary engine (RE), which can effectively reduce the carbon emissions of RE. Additionally, applying turbulent jet ignition (TJI) mode to RE can significantly increase the combustion rate. The purpose of this study is to numerically investigate the influence of hydrogen injection position (HIP) and hydrogen injection timing (HIT) on the in-cylinder mixture formation, flame propagation and NOx emission of a TJI hydrogen direct injection plus natural gas port injection RE. Therefore, in this paper, a test bench and a 3D dynamic simulation model of the turbulent jet ignition rotary engine (TJI-RE) fueled with NGHB were respectively established. Moreover, the reliability of the 3D simulation model was verified by experimental data. Furthermore, based on the established 3D model, the fuel distribution and flame propagation in the cylinder under different HIPs and HITs were calculated. The results indicated that the HIP and HIT could change the hydrogen distribution by altering the impact position, impact angle, and the strength of vortexes in the cylinder. To improve the flame propagation speed, more hydrogen should be distributed in the pre-chamber. Additionally, a higher concentration of hydrogen in the cylinder should be maintained above the jet orifice. This was not only conducive to the rapid formation of the initial fire core in the pre-chamber, but also significantly improved the combustion rate of the in-cylinder mixture. Compared with other hydrogen injection strategies, the hydrogen injection strategy by using the HIP at the middle of the cylinder block and the HIT of 190oCA(BTDC) could obtained the highest peak value of in-cylinder pressure and the highest NOx emission.  相似文献   

8.
利用快速压缩装置研究天然气直喷燃烧循环变动   总被引:1,自引:2,他引:1  
利用快速压缩装置研究了天然气直喷燃烧循环变动,研究结果表明:借助于分层燃烧和由燃料喷射的湍流引发的快速火焰传播,天然气直喷燃烧在小当量比条件下能实现良好的燃烧稳定性,低的压力峰值循环变动,低的压力升高率峰值循环变动和低的燃烧放热率峰值循环变动,研究发现燃烧期和燃烧产物的循环变动。CO和未燃碳氢的循环变动依赖于后续燃烧期的循环变动,NOx的循环变动依赖于快速燃烧期的循环变动。在燃烧最佳喷射条件下,天然气直喷燃烧的循环变动随当量比的变化并不敏感。  相似文献   

9.
Recent high-speed imaging of ignition processes in spray-guided gasoline engines has motivated the development of the physically-based spark channel ignition monitoring model SparkCIMM, which bridges the gap between a detailed spray/vaporization model and a model for fully developed turbulent flame front propagation. Previously, both SparkCIMM and high-speed optical imaging data have shown that, in spray-guided engines, the spark plasma channel is stretched and wrinkled by the local turbulence, excessive stretching results in spark re-strikes, large variations occur in turbulence intensity and local equivalence ratio along the spark channel, and ignition occurs in localized regions along the spark channel (based upon a Karlovitz-number criteria).In this paper, SparkCIMM is enhanced by: (1) an extended flamelet model to predict localized ignition spots along the spark plasma channel, (2) a detailed chemical mechanism for gasoline surrogate oxidation, and (3) a formulation of early flame kernel propagation based on the G-equation theory that includes detailed chemistry and a local enthalpy flamelet model to consider turbulent enthalpy fluctuations. In agreement with new experimental data from broadband spark and hot soot luminosity imaging, the model establishes that ignition prefers to occur in fuel-rich regions along the spark channel. In this highly-turbulent highly-stratified environment, these ignition spots burn as quasi-laminar flame kernels. In this paper, the laminar burning velocities and flame thicknesses of these kernels are calculated along the mean turbulent flame front, using tabulated detailed chemistry flamelets over a wide range of stoichiometry and exhaust gas dilution. The criteria for flame propagation include chemical (cross-over temperature based) and turbulence (Karlovitz-number based) effects. Numerical simulations using ignition models of different physical complexity demonstrate the significance of turbulent mixture fraction and enthalpy fluctuations in the prediction of early flame front propagation. A third paper on SparkCIMM (companion paper to this one) focuses on the importance of molecular fuel properties and flame curvature on early flame propagation and compares computed flame propagation with high speed combustion imaging and computed heat release rates with cylinder pressure analysis.The goals of SparkCIMM development are to (a) enhance our fundamental understanding of ignition and combustion processes in highly-turbulent highly-stratified engine conditions, (b) incorporate that understanding into a physically-based submodel for RANS engine calculations that can be reliably used without modification for a wide range of conditions (i.e., homogeneous or stratified, low or high turbulence, low or high dilution), and (c) provide a submodel that can be incorporated into a future LES model for physically-based modeling of cycle-to-cycle variability in engines.  相似文献   

10.
The self-acceleration characteristics of a syngas/air mixture turbulent premixed flame were experimentally evaluated using a 10% H2/90% CO/air mixture turbulent premixed flame by varying the turbulence intensity and equivalence ratio at atmospheric pressure and temperature. The propagation characteristics of the turbulent premixed flame including the variation in the flame propagation speed and turbulent burning velocity of the syngas/air mixture turbulent premixed flame were evaluated. In addition, the effect of the self-acceleration characteristics of the turbulent premixed flame was also evaluated. The results show that turbulence gradually changes the radius of the premixed flame from linear growth to nonlinear growth. With the increase of turbulence intensity, the formation of a cellular structure of the flame front accelerated, increasing the flame propagation speed and burning speed. In the transition stage, the acceleration exponent and fractal excess of the turbulent premixed flame decreased with increasing equivalence ratio and increased with increasing turbulence intensity at an equivalence ratio of 0.6. The acceleration exponent was always greater than 1.5.  相似文献   

11.
采用直接数值模拟方法对二甲醚(Dimethyl Ether,DME)射流推举燃烧进行了研究(DNS),分析了DME射流推举火焰结构、燃烧模式和推举稳定机理。数值模拟工况条件为:燃料由狭缝射出,初始温度500 K,射流速度138 m/s;伴流空气的初始温度1 000 K,流速3 m/s,压力为0506 6 MPa。研究表明:DME射流推举火焰与传统的边火焰有很大不同,在射流核心区内存在1条低温放热分支以及紧随其后的中温着火分支,并且推举稳定点位于贫燃侧;DME湍流射流推举火焰包含冷焰反应区(Cool Flame Zone,CFZ)、中温反应区(Intermediate Temperature Zone,ITZ)、富燃高温区(High Temperature Rich Burn Zone,HTR)以及贫燃高温区(High Temperature Lean Burn Zone,HTL)4种模式;在CFZ与ITZ区内湍流混合占主导,并且湍流混合会抑制低温放热;在HTR与HTL区内放热速率占主导地位,但是湍流会显著增强超贫燃区间内的高温放热速率;大部分热量在HTL和HTR区产生,而CFZ和ITZ区对总体产热的贡献微乎其微,但是所产生的中低温组分加快了高温着火过程;射流推举稳定性由贫燃侧的高温自着火反应机制所控制。  相似文献   

12.
基于单缸试验机研究了过量空气系数对射流点火发动机性能的影响。通过分析发动机性能曲线、缸内燃烧情况及爆震特性探究射流点火最佳运行区间,并与火花点火燃烧方式进行对比。结果表明,射流点火可以有效提升瞬时放热率并拓展发动机稀燃极限,缩短缸内混合气滞燃期与燃烧持续期,同时燃油经济性有一定提升。在稀燃条件下氮氧化物排放极低。爆震方面,随着点火提前角增大,射流火焰的多点点火效应会在缸内产生明显压力震荡,继续增大点火提前角会诱导末端混合气自燃。因此射流点火爆震缸压表现为两阶段压力震荡,爆震因子集中性高。提升过量空气系数可以降低射流点火爆震因子幅值,使发动机工作在轻微爆震或无爆震状态。  相似文献   

13.
对长、宽、高为650 mm×400 mm×12 mm的半闭口狭窄矩形通道(海伦-肖装置)内的甲烷/空气层流预混火焰传播过程进行了实验研究,探究当量比φ在0.6~1.2范围内、火焰传播角度ω在垂直向下-90°至垂直向上90°区间对火焰前锋轮廓发展及非标准层流火焰速度的影响。结果表明:火焰在通道内的传播分为热膨胀、准稳态传播和端壁效应3个阶段,每个阶段具有各自不同的前锋轮廓特征。由于瑞利-泰勒不稳定性机制的作用,所有当量比工况下向上传播的火焰均在准稳态传播阶段中呈现出明显的锋面褶皱与胞状结构;对向下传播的火焰而言,其在贫燃工况(φ为0.6,0.8)下的胞状不稳定性得到了有效抑制,而在当量比φ=1.0及富燃工况(φ=1.2)下,该稳定性效应并不显著。火焰瞬时速度与标准层流速度的比值Ui/UL,在φ=0.6的极贫燃工况与其他当量比工况下展现出明显不同的发展特性,极贫燃工况火焰向上传播时(ω=90°),Ui/UL随着传播过程的进行一直增大,直到火焰触碰壁面末端熄灭,整个过程Ui/UL与火焰传播方向呈正相关关系;而对于其他当量比工况,Ui/UL在传播过程中均先升高后下降,火焰触碰壁面末端熄灭前其值趋于稳定,其平均速度与标准层流速度的比值Ua/UL在水平传播(ω=0°)时达到最大值。  相似文献   

14.
One cylinder of the Colorado State University large-bore test engine was instrumented with fast-response surface thermocouples for heat-transfer analysis. Probes were installed at several locations progressively farther from the ignition source and their outputs were recorded along with combustion pressure using a high-speed data-acquisition system. The engine was operated with two different ignition methods and the manifold boost pressure and cylinder jacket water temperature (JWT) were varied. The recorded surface temperature data were processed to calculate in-cylinder heat transfer.Combustion initiated with a screw-in type pre-combustion chamber resulted in significantly different characteristics than that initiated by a conventional spark plug. The differences in peak heat-flux value could likely be attributed to flame quench distance. Differences in other portions of the cycle could have been caused by significantly increased flame velocities associated with the pre-chamber jet. Increasing boost pressure from 25 to 54 kPa decreased peak heat-flux values about 20–30% and steady-state values about 13%. Increasing JWT 14 K had an insignificant effect on heat flux and combustion pressure.  相似文献   

15.
根据柴油机喷束所具有的特点,设计了一种基于喷束壁面引导、分层理论和空间分散思想的双壁面射流燃烧系统。该系统具有低压缩比、单峰放热率的特性。通过试验研究了双壁面射流柴油机的燃烧特性与排放性能。试验结果表明:采用低压缩比的双壁面射流柴油机缸压峰值低于原机,燃烧始点向后推迟,滞燃期增加。在相同的喷射定时条件下,双壁面射流柴油机放热率重心向后推迟,即燃烧相位向后推迟3~4°CA,但是在θ0~θ70燃烧阶段具有较高的燃烧速率;在保持发动机动力性不变的情况下,双壁面射流燃烧系统2 100r/min全负荷时NOx排放从原机的731×10-6降低到523×10-6,在3 000r/min全负荷时NOx排放从原机的523×10-6降低到383×10-6;双壁面射流燃烧系统降低了低速烟度,在1 400r/min全负荷时烟度从原机的3.3BSU降低到2.1BSU,中、高速由于碳烟在燃烧后期的氧化能力受到抑制,烟度略有增加。  相似文献   

16.
The combustion characteristics of ammonia and ammonia-hydrogen fuel blends under spark-ignited turbulent premixed engine-relevant conditions were investigated by means of direct numerical simulation and detailed chemistry. Several test cases were investigated for an outwardly expanding turbulent premixed flame configuration covering pure ammonia and ammonia-hydrogen fuel blends with 10% and 15% hydrogen content by volume for different equivalence ratio values of 0.9, 1.0 and 1.1. The results showed that the fuel-lean flames exhibit strong wrinkled structures at flame front compared to stoichiometric and fuel-rich flames. The heat release rate plots indicate that adding hydrogen into ammonia improves the reactivity of the flame and enhances the combustion process. The scatter plots of heat release rate versus local curvature coloured by NO formation, show that high heat release rate values occur in the concave structures and low heat release rate values occur in the convex structure, which is consistent with NO distribution. The highest turbulent burning velocity values were found for the fuel-lean cases due to more wrinkled flame front with lower effective Lewis number compared to fuel-rich cases. The results show a bending effect for the ratio between turbulent to laminar burning velocities with respect to hydrogen addition at all equivalence ratios with 10% hydrogen addition into ammonia exhibiting a highest value for the burning velocity ratio. Two distinct flame structures (concave and convex) were analysed in terms of local equivalence ratio based on the elements of N and O as well as H and O. They revealed an opposite distribution of NO formation normal to the flame front within concave and convex structures. Elementary chemical reactions involved in NO formation have shown that hydrogen addition into ammonia influences the reactivity of certain specific chemical reactions.  相似文献   

17.
In this paper, the combustion characteristics of premixed CH4-air and H2-air mixtures with different excess air coefficients ignited by hot jet or jet flame are investigated experimentally in a constant volume combustion chamber (CVCC). The small volume pre-chambers with different orifices (2 or 3 mm in diameter) in the passive or active pre-chamber were selected. Both the high-speed Schlieren and OH1 chemiluminescence imaging are applied to visualize the turbulent jet ignition (TJI) process in the main chamber. Results show that the variation of orifice has diverse influences on the turbulent jet ignitions of methane and hydrogen. Smaller orifices will reduce the temperature of the jet due to the stronger stretch and throttling effect, including change of lean flammability limit, ignition delay, and re-ignition location. Furthermore, shock waves and pressure oscillations were captured in the experiments with hydrogen jets. The former is related to the jet velocity, while the latter is mainly affected by the mixture thermodynamic states in the main chamber. Furthermore, the re-ignition location is discussed. If the mixture reactivity and the jet energy are sufficiently high, the reaction will be initiated at the tip of the jet in a short time. On the contrary, a relatively long time is required to prepare the mixture during the entrainment when the reactivity is not high enough, and the corresponding re-ignition location will move towards the orifice exit owing to the temperature decline at the tip. Finally, the ignition mode transition of hydrogen jet in lean cases with a 2 mm orifice is explained.  相似文献   

18.
By utilizing a newly designed constant volume combustion bomb (CVCB), turbulent flame combustion phenomena are investigated using hydrogen–air mixture under the initial pressures of 1 bar, 2 bar and 3 bar, including flame acceleration, turbulent flame propagation and flame–shock interaction with pressure oscillations. The results show that the process of flame acceleration through perforated plate can be characterized by three stages: laminar flame, jet flame and turbulent flame. Fast turbulent flame can generate a visible shock wave ahead of the flame front, which is reflected from the end wall of combustion chamber. Subsequently, the velocity of reflected shock wave declines gradually since it is affected by the compression wave formed by flame acceleration. In return, the propagation velocity of turbulent flame front is also influenced. The intense interaction between flame front and reflected shock can be captured by high-speed schlieren photography clearly under different initial pressures. The results show that the propagation velocity of turbulent flame rises with the increase of initial pressure, while the forward shock velocities show no apparent difference. On the other hand, the reflected shock wave decays faster under higher initial pressure conditions due to the faster flame propagation. Moreover, the influence of initial pressure on pressure oscillations is also analyzed comprehensively according to the experimental results.  相似文献   

19.
The cycle-by-cycle variations in heat release are analyzed by means of a quasi-dimensional computer simulation and a turbulent combustion model. The influence of some basic combustion parameters with a clear physical meaning is investigated: the characteristic length of the unburned eddies entrained within the flame front, a characteristic turbulent speed, and the location of the ignition kernel. The evolution of the simulated time series with the fuel–air equivalence ratio, ?, from lean mixtures to over stoichiometric conditions, is examined and compared with previous experiments. Fluctuations on the characteristic length of unburned eddies are found to be essential to simulate the cycle-to-cycle heat release variations and recover experimental results. A non-linear analysis of the system is performed. It is remarkable that at equivalence ratios around ? ? 0.65, embedding and surrogate procedures show that the dimensionality of the system is small.  相似文献   

20.
缸内涡流比对冷起动燃烧火焰的影响探究   总被引:2,自引:2,他引:0       下载免费PDF全文
针对汽油发动机冷起动存在的燃烧不稳定、燃烧效率低的问题,基于单缸可视化发动机在冷起动工况下调节进气涡流,通过分析缸内燃烧火焰特性来探究增强进气涡流对发动机循环波动及输出功率的影响。试验所用发动机为单缸四气门(两进两出)缸内直喷汽油机,其中一个进气道加装有涡流控制阀,通过将一个进气道关闭或者开启来改变缸内涡流的强度。利用高速相机从活塞上的光学通道得到发动机缸内的火焰传播图像,并计算火焰传播面积,提取火焰边界,获取火焰中心速度及火焰扩散速度等信息,同时也利用燃烧分析仪对缸内压力、燃烧放热率等特性进行同步测量和记录,通过多角度的对比和分析揭示缸内燃烧状况与发动机宏观性能的相关联系,有效地发掘了在不同涡流强度下缸内火焰的传播特征。研究结果从缸内燃烧火焰的角度解释了提高涡流比能够很好地提高冷起动的燃烧稳定性,促进发动机缸内燃烧。研究表明,早期火核分布越集中,波动越小,后期循环波动就越小。试验结果还表明,由缸压计算的瞬时放热率与火焰面积存在很好的线性关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号