首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用光学显微镜、扫描电镜和激光导热等手段,研究了单独或复合添加La、Ce对铸造Al-7Si-0.6Cu-0.8Fe合金微观组织、力学性能和热导率的影响。结果表明,添加0.3%的(La+Ce)后,合金中α-Al相得到了较大程度的细化,二次枝晶臂间距(SADS)达到较小值(13.1μm),共晶Si形貌转化为细小的颗粒状且均匀地分布于晶界处,富Fe相长度降低了57.51%,其合金的热导率为159.68 W/(m·K)、抗拉强度为231.3 MPa、伸长率为6.89%,与未添加稀土合金相比,分别提高了13.79%、24.96%和118.73%。  相似文献   

2.
采用扫描电镜、能谱仪、万能试验机和电化学工作站等研究了单一稀土(La或Ce)以及混合稀土(La和Ce)的添加对7A04铝合金微观组织与性能的影响。结果表明:在7A04铝合金中添加稀土La和Ce后,沿晶界有块状和棒状的稀土相析出,并使呈连续网状分布的第二相变成断续分布,合金的二次枝晶组织得到细化,其中添加单一稀土Ce对合金的细化效果最好,平均晶粒尺寸为20μm;添加单一稀土La或Ce以及不同比例的混合稀土La和Ce后,7A04铝合金的力学性能和耐腐蚀性能均有所提高,性能由大到小依次为:添加单一稀土Ce、混合稀土La∶Ce=5∶5、单一稀土La、混合稀土La∶Ce=3∶7、混合稀土La∶Ce=7∶3、无稀土,说明单一稀土Ce的添加对7A04铝合金性能改善效果最好,其显微硬度、抗拉强度、伸长率分别为125.4 HV0.5、532.5 MPa和10.8%,相比未添加稀土元素的铝合金,分别提高了72.7%、30.9%和74.2%。  相似文献   

3.
在亚共晶Al-4Si-0.45Mg合金中添加微量AlN,以改善合金的显微组织并提高其力学性能和导热性能。结果表明,未添加Sr和AlN的合金,其抗拉强度为167.3 MPa,伸长率为10%,热导率为149.5 W/(m·K);添加Sr后的抗拉强度为176.2 MPa,伸长率为20%,热导率为166.8 W/(m·K),抗拉强度和热导率分别提高了5.4%、11.6%;添加AlN后的合金抗拉强度为194.8 MPa,伸长率为16%,热导率为170.1 W/(m·K),抗拉强度和热导率分别提高了16.4%、13.8%。力学性能的提高主要与α-Al的晶粒细化、二次枝晶臂间距(SADS)的减小和Si的变质有关。加入Sr和AlN后,共晶Si由片状变成块状和球状,Sr变质后共晶Si的尺寸明显减少,且AlN变质后共晶Si的平均尺寸更小,说明热导率的提高主要与共晶Si相的形态变化有关。其机制为细小的Si使得电子通道增加,电子散射概率降低,平均自由程增加,从而提高了热导率。  相似文献   

4.
采用SEM、EDS和XRD等测试手段,研究了Mg-50%TiB2中间合金和稀土元素Ce对AZ91D镁合金显微组织的细化效果。结果表明,加入1.4%的中间合金可以显著细化AZ91D镁合金的枝晶组织和晶粒,α-Mg的平均晶粒尺寸由240μm下降至50μm。在此基础上,复合添加0.2%Ce后,枝晶组织和晶粒进一步细化,同时,β相由粗大骨骼状转变为岛状和细小的粒状,且产生新相Al4Ce。通过能谱分析及面错配度计算证实,TiB2可作为初生α-Mg的良好异质核心。加入稀土元素Ce引起合金成分过冷度增加,从而激活固液界面前沿潜在的TiB2核心,提高TiB2的形核率。  相似文献   

5.
在Sr+B复合变质A356合金的基础上加入稀土Y,通过光学显微镜及扫描电镜观察不同Y添加量对合金铸态显微组织形貌和尺寸的影响,并分析其力学性能和导热性能的变化规律。结果表明:稀土Y的添加不会影响Sr+B的变质效果且会使合金组织进一步细化,α-Al晶粒尺寸由未加Y变质时的62μm降低至44μm,二次枝晶臂间距从未变质时的12μm降低至9μm;A356铝合金中引入稀土Y会导致导热性能小幅度降低,但可以显著提升拉伸性能。当稀土Y添加量为0.4wt.%时,合金的综合性能最佳,热导率为158.8 W/(m·K),抗拉强度和伸长率分别为209.9 MPa和11.44%,与未加入稀土Y相比分别提升19.55%和167.29%。  相似文献   

6.
通过金相显微镜(OM)、拉伸力学性能测试、扫描电镜(SEM)、能谱分析(EDS)等手段,研究了稀土元素Ce、La对Al-8.5Mg-0.5Mn合金铸态组织及力学性能的影响。Ce、La能够细化高镁铝合金的组织,其铸态显微组织由发达的树枝晶变成不明显的树枝晶,又演变成晶胞状。添加Ce的试验合金中有少量粗大骨骼状的Al4Ce相存在,而添加La的合金中未发现粗大的Al-La相。添加稀土Ce或La可使高镁铝合金的强度得到不同程度的提升,且随着Ce或La含量的提高,合金的抗拉强度变化趋势一致,均会出现2个峰值:当Ce或La添加量约为0.25%时,合金的抗拉强度为180~190 MPa;当Ce或La添加量为1.5%时,合金抗拉强度为220~230 MPa。添加稀土La后合金的伸长率高于加稀土Ce的。  相似文献   

7.
研究了电磁搅拌连续铸挤Al-5Ti-1B晶粒细化剂添加量和熔体保温时间对2024铝合金铸态组织的影响。结果表明:添加0.1%的Al-5Ti-1B,可使2024铝合金的铸态组织从167.4μm的粗大枝晶细化到59.4μm的等轴晶。随着Al-5Ti-1B的添加量从0.1%逐渐增加到0.4%,2024铝合金的晶粒进一步细化,但晶粒细化效应逐渐减弱。当Al-5Ti-1B添加量为0.4%,2024铝合金被细化为平均直径为34.3μm的等轴晶。添加0.1%的Al-5Ti-1B并静置1 min,2024铝合金晶粒被细化至91.3μm。保温5 min,晶粒被细化为58.6μm的等轴晶;保温时间延长至120 min,晶粒未见明显长大。试验结果表明,电磁搅拌连续铸挤Al-5Ti-1B细化2024铝合金具有晶粒细化效果好、响应时间短和持续时间长的优点。  相似文献   

8.
采用熔铸工艺制备了不同Cu含量(0.03%~4.2%)的Al-12Si-xCu-0.6Mg合金试样,分析Cu含量对Al-Si合金组织结构、力学性能与导热性能的影响。结果表明,随着Cu含量从0.03%增加到4.2%,Al-12Si-xCu-0.6Mg合金强度由212.3 MPa提高到285.3MPa,但热导率由152W/(m·K)降低到119W/(m·K)。另外,随着Cu含量增加,合金中初生α-Al相明显细化,从发达树枝晶向细小圆整等轴晶转化,共晶Si相晶粒尺寸逐渐增大;分散的块状α-Al相会造成电子传导通道的断裂,粗大的共晶Si提高电子运动过程中的散射概率,降低自由电子的平均自由程,从而导致合金导热性能下降。  相似文献   

9.
通过添加Al-La中间合金的方式对含多种合金元素的Al-12.35Si合金进行稀土La变质处理,研究La含量(0.1%~0.8%)对其微观组织及力学性能的影响。结果表明,适量La可以减小长针状共晶Si尺寸,细化第二相组织,减小初生α-Al二次枝晶臂间距。过量La可引起过变质,致使合金组织粗化。当La含量为0.2%时,Al-Si合金凝固组织变质效果最为理想且其力学性能最佳,抗拉强度从168MPa提高至188MPa,伸长率从0.44%提高到0.53%;随着La含量继续增加,合金强度及塑性下降。  相似文献   

10.
采用金属型铸造、液态挤压铸造和半固态挤压铸造方法制备了7075铝合金,研究了不同铸造工艺对7075铝合金热导率与力学性能的影响。结果表明,金属型铸造晶粒粗大,产生枝晶偏析降低塑韧性,抗拉强度及伸长率最小,分别为121 MPa和2.78%,但晶粒粗大使热量传导路径宽,对电子散射几率小,电子的平均自由程较长,热导率相对较高,达到了139.67W/(m·K);液态挤压铸造晶粒细化,抗拉强度和伸长率分别为239MPa和5.75%,但晶粒细小且枝晶臂较多,对电子散射程度大,热导率最低,为120.94W/(m·K);半固态挤压铸造的晶粒致密细小且圆整,抗拉强度及伸长率最高分别达到248MPa和7.46%,且热导率为126.07W/(m·K)。  相似文献   

11.
采用电磁搅拌连续铸挤工艺制备Al-5Ti-1B晶粒细化剂,研究了Al-5Ti-1B添加量对6061铝合金显微组织与力学性能的影响。结果表明:添加质量分数为0.1%的Al-5Ti-1B,6061铝合金的显微组织从171μm的粗大枝晶细化成平均直径为70μm的等轴晶,合金的抗拉强度提高了26.47%,伸长率提高了50.91%。随着Al-5Ti-1B的质量分数从0.1%逐渐增加到0.5%,6061铝合金的晶粒进一步细化,抗拉强度和伸长率进一步提高,但晶粒细化效应逐渐减弱。当Al-5Ti-1B添加量为0.5%时,6061铝合金被细化为平均直径为37μm的等轴晶,合金的抗拉强度和伸长率分别为243 N/mm2和10.5%。与未添加Al-5Ti-1B的6061铝合金相比,抗拉强度和伸长率分别提高了42.95%和90.91%。  相似文献   

12.
采用B掺杂型TiC粒子(TCBp)及纳米AlN粒子(AlNp)对Al-9Si-3Cu合金进行晶粒细化及强化处理,通过光学显微镜、场发射扫描电镜、万能试验机、激光导热测试仪等对Al-9Si-3Cu合金的微观组织、力学及导热性能进行测试和分析。结果表明:以晶种合金形式添加TCBp及纳米AlNp后,Al-9Si-3Cu合金的α-Al晶粒明显细化,AlNp分布于合金共晶区;铸态合金的抗拉强度和伸长率由209 MPa和4.5%提高至228 MPa和7.3%,分别提高了9.1%和62.2%。经180℃时效6 h后,抗拉强度及伸长率进一步提升至239 MPa和9.6%;添加晶种合金并经时效处理后,Al-9Si-3Cu合金的热导率由197.2 W/(m·K)提升至198.2 W/(m·K)。基于TCBp及纳米AlNp的协同作用制备了一种高导热高强韧Al-9Si-3Cu合金。  相似文献   

13.
采用真空感应熔炼技术得到Cu-0.4Cr-0.2Zr-0.15Mg-RE铸锭,通过金相显微镜观察加入不同含量稀土的金相组织,采用SEM观察组织形貌并对合金组织进行EDXS能谱分析,最后测试铜合金的力学性能和导电性能。结果表明:加入La和Ce后,合金晶粒细化,组织均匀致密,Cr、Mg析出相在基体中的分布由条状、带状转变为点状、细块状。稀土元素主要分布在晶界处,加入稀土元素后,合金的抗拉强度有大幅度的提高,分别加入0.10%的La和0.10%的Ce后,合金的峰值强度分别为250.13 MPa和259.32 MPa,相比于不加稀土的212.34 MPa,分别提高了17.80%、22.13%;加入0.15%稀土元素La和Ce后,合金的导电率则随着稀土元素含量的增加呈单调增加,且La对铜合金导电性能的提高作用优于Ce的,但两者相差微小。因此,从提高合金综合性能方面考虑,加入0.10%的Ce是最佳选择。  相似文献   

14.
研究了添加0.1%~1.0%Ce(质量分数)对高纯Mg-3Al合金晶粒尺寸的影响.结果表明,随Ce添加量的增加合金晶粒逐步粗化,当Ce添加量达到1%时,晶粒尺寸可达到870μm.Ce加入后,大量的Ce与Al反应生成针状的Al11Ce3相,主要分布于枝晶间隙,无法作为形核核心,对Mg-3Al晶粒无细化作用.Ce与C的反应...  相似文献   

15.
采用SEM、EDS和XRD等测试手段,研究稀土元素Ce和Mg-50Al4C3中间合金对AZ31B镁合金显微组织的细化效果.结果表明,加入0.5%的Al4C3可显著细化AZ31B镁合金的枝晶组织和晶粒尺寸;添加0.5%的Al4C3和0.3%的Ce使合金的枝晶组织和晶粒尺寸进一步细化,α-Mg的平均晶粒尺寸由基体合金的280 μm降至约50 μm,同时,β相由连续网状转变为不连续的网状和细小的粒状,且产生新相Al4Ce.通过能谱分析及面错配度计算证实,Al4C3可作为初生α-Mg晶粒的良好异质核心.加入稀土元素Ce引起合金成分过冷的增加,从而能够激活固/液界面前沿潜在的Al4C3形核,提高Al4C3的形核率.  相似文献   

16.
通过XRD分析、金相显微镜(OM)和扫描电镜(SEM)观察及拉伸力学性能测试等手段,研究了添加稀土元素Sc对亚共晶Al-11Mg_2Si合金显微组织及力学性能的影响。结果表明:在Al-11Mg_2Si合金中添加适量的Sc对初生α-Al和共晶Mg_2Si相同时起到良好的细化和变质作用。α-Al晶体由粗大的树枝晶转变为细小的球状晶,其平均尺寸由67.72μm减小至最小14.28μm;共晶Mg_2Si由粗大的片层状转变为细小的纤维状和颗粒状,其平均尺寸由12.37μm减小至最小1.80μm。经0.25%Sc处理后,合金的抗拉强度、伸长率和硬度分别由未细化、变质的269 MPa、5.2%和35HRB提高到334 MPa、9.4%和53 HRB,分别提高了24.2%、80.8%和51.4%。含0.25%Sc合金断口中大量形成韧窝,其断裂模式从脆性转变为韧性。  相似文献   

17.
Ce对镁及镁合金中晶粒的细化机理   总被引:22,自引:0,他引:22  
研究了Ce对镁及镁合金晶粒细化效果和力学性能的影响。结果表明:纯镁结晶时易形成粗大的柱状晶和扇形晶,加入微量稀土元素Ce后,晶粒被明显细化,柱状晶全部转化成等轴晶。在AZ31合金中添加微量稀十元素Ce,晶粒由未细化前的约300μm下降到约30μm。稀土Ce在镁及AZ31合金中的固溶度很小,在凝固过程中固/液界面前沿Ce容易富集引起成分过冷形成新形核带导致晶粒细化。凝固过程中溶质再分配造成固液界面前沿成分过冷度增大是稀土元素细化镁及镁合金的主要机理。  相似文献   

18.
《铸造》2015,(5)
使用OM、SEM、XRD研究了在Al-20Si-2Cu合金中添加不同含量Ni后微观组织的演变和合金性能的变化。研究表明:Ni元素的添加不仅能使α-Al树枝晶的一次枝晶长度从150μm减小到100μm,二次枝晶臂间距由16.4μm减小至10.2μm,而且使强化相的形貌及成分发生显著的变化;另外,随Ni含量的增加,合金的高温抗拉强度从79.5 MPa提高到106.3 MPa,提高了33.7%,伸长率则先增加后减小。  相似文献   

19.
在Mg-6Zn合金中添加0.6%、1%和2%Ce(质量分数),联合往复挤压和低温正挤压细化Mg-Zn-Ce合金组织,利用X射线衍射、光学显微镜、扫描电镜和透射电镜分析合金中相组成和组织演化,测试合金的室温力学性能。结果表明:Mg-6Zn-0.6Ce合金中主要化合物为Mg_4Zn_7相,Mg-6Zn-1Ce和Mg-6Zn-2Ce合金中主要化合物为T-(MgZn)_(12)Ce相。往复挤压合金经动态再结晶而细化,晶粒尺寸随Ce添加量增加而变小,分别为20.6μm、16.5μm和9.1μm。低温正挤压时,合金再次发生动态再结晶而再次细化,晶粒尺寸分别为2.0μm、8.6μm和1.9μm。Mg-6Zn-0.6Ce合金力学性能最佳,屈服强度、抗拉强度和伸长率分别为266.4 MPa、312.4 MPa和12.8%。合金的优良性能是由细晶强化、颗粒强化和固溶强化的共同作用造成的。  相似文献   

20.
利用金相显微镜和拉伸实验机,研究了不同含量的微量稀土元素Ce对铸造Al-Cu-Mn合金显微组织和力学性能的影响。结果表明:随稀土元素Ce含量的增加,合金中枝状晶呈先变小后变大;热处理后合金的抗拉强度和伸长率先增加后减小。当稀土元素Ce含量为0.1%时,合金的抗拉强度和伸长率达到最大值,分别为425 MPa和.18%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号