首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Curcumin, which is a widely used dietary pigment and spice, has been demonstrated to be an effective inhibitor of tumor promotion in mouse skin carcinogenesis. We report that curcumin induces cell shrinkage, chromatin condensation, and DNA fragmentation, characteristics of apoptosis, in immortalized mouse embryo fibroblast NIH 3T3 erb B2 oncogene-transformed NIH 3T3, mouse sarcoma S180, human colon cancer cell HT-29, human kidney cancer cell 293, and human hepatocellular carcinoma Hep G2 cells, but not in primary culture of mouse embryonic fibroblast C3H 10T1/2, rat embryonic fibroblast, and human foreskin fibroblast cells in a concentration- and time-dependent manner. Many cellular and biochemical effects of curcumin in mouse fibroblast cells have been reported, such as inhibition of protein kinase C (PKC) activity induced by phorbol 12-myristate 13-acetate treatment, inhibition of tyrosine protein kinase activity, and inhibition of arachidonic acid (AA) metabolism. Treatment of NIH 3T3 cells with the PKC inhibitor staurosporine, the tyrosine kinase inhibitor herbimycin A, and the AA metabolism inhibitor quinacrine induces apoptotic cell death. These results suggest that, in some immortalized and transformed cells, blocking the cellular signal transduction might trigger the induction of apoptosis.  相似文献   

2.
Crk, which belongs to the adaptor family of proteins composed of Src homology 2 (SH2) and SH3 domains, has a putative role in signaling. However, the downstream events of Crk signaling remain unclear. In this study, we found that Jun kinase (JNK) is moderately activated by v-Crk in both NIH 3T3 cells and chicken embryo fibroblasts. Transient expression of v-Crk, c-Crk-I, or c-Crk-II activated JNK1 in human embryo kidney cells, 293T. Coexpression of a guanine nucleotide exchange protein C3G, which specifically binds to Crk's SH3 domain, further enhanced the JNK activity as well as growth rate and anchorage-independent growth of v-Crk NIH 3T3 cells. Furthermore, overexpression of a dominant-negative form of C3G lacking the guanine nucleotide exchange domain abolished both the JNK activity and the colony forming potential of v-Crk NIH 3T3 cells. The requirement for JNK activation in v-Crk induced transformation was demonstrated by the suppression of colony forming activity of v-Crk NIH 3T3 cells when a dominant-negative form of JNK kinase, Sek1/MKK4 is expressed in these cells. These data strongly suggest the existence of a novel signaling cascade involving an adaptor protein v-Crk, which transmits signals through C3G toward JNK activation.  相似文献   

3.
The NS3 protein of hepatitis C virus is a multifunctional protein that is indispensable for virus replication. Little is known, however, about the possible effects of the NS3 on host cell function(s). In the present study, we demonstrated that NIH3T3 cells constitutively expressing a carboxy-terminally truncated NS3 (NS3DeltaC) were more resistant to actinomycin D-induced apoptosis than the control cells. We also observed that induction of p53 expression by actinomycin D treatment was weaker in the NS3DeltaC-expressing cells than in the control cells. However, induction of WAF1 expression by the same treatment was not different between the two groups. Taken together, our results suggest the possibility that expression of NS3DeltaC suppressed actinomycin D-induced apoptosis of NIH3T3 cells through at least partly, if not solely, a p53-dependent, WAF1-independent pathway.  相似文献   

4.
We have determined the patterns of mRNA and protein expression of 7 protein kinase C (PKC) isozymes in NIH 3T3 cells. Only PKC-alpha is expressed abundantly in NIH 3T3 cells; endogenous levels of the other 6 PKC isozymes are low or undetectable. We have overexpressed PKC-delta and -epsilon in these cells to observe activation/translocation of these two isozymes and the biological consequences of overexpression. Both PKC-delta and -epsilon, but not PKC-alpha, are partially associated with the insoluble fraction even in the absence of phorbol 12-myristate 13-acetate (PMA). Upon PMA stimulation, both PKC-delta and -epsilon translocate to the insoluble fraction of cell homogenates, as can be observed with the endogenous PKC-alpha. Overexpression of PKC-delta induces significant changes in morphology and causes the cells to grow more slowly and to a decreased cell density in confluent cultures. These changes are accentuated by treatment with PMA. Overexpression of PKC-epsilon does not lead to morphological changes, but causes increased growth rates and higher cell densities in monolayers. None of the PKC-delta overexpressers grow in soft agar with or without PMA, but all the cell lines that overexpress PKC-epsilon grow in soft agar in the absence of PMA, but not in its presence. NIH 3T3 cells that overexpress PKC-epsilon also form tumors in nude mice with 100% incidence. This indicates that high expression of PKC-epsilon contributes to neoplastic transformation.  相似文献   

5.
Two distinct components, alpha and beta chains, which compose the high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) do not contain any catalytic domains of known enzymes. However, in mouse lymphoid cell lines transfected with cDNAs of the both chains, GM-CSF triggers tyrosine phosphorylation of several cellular proteins and allows continuous proliferation. To elucidate whether the high affinity receptor functions in nonhematopoietic cells, we have reconstituted human GM-CSF receptor in mouse NIH3T3 fibroblasts. In NIH3T3 clones, in which the high affinity receptor is reconstituted, human GM-CSF has triggered rapid tyrosine phosphorylation of cellular proteins, transfected beta chain, and another protein of 40-45 kDa. Moreover, human GM-CSF stimulated DNA synthesis and induced morphological transformation. These observations indicate that coordinately expressed alpha and beta chains of human GM-CSF receptor activates intrinsic protein-tyrosine kinases by the stimulation with human GM-CSF and that the activated protein-tyrosine kinases phosphorylate tyrosine residues of an intrinsic 40-45-kDa protein and the transfected beta chain in NIH3T3 cells. Activation of the protein-tyrosine kinases is likely to have biological functions to induce DNA synthesis and morphological transformation of mouse fibroblasts.  相似文献   

6.
pp120, a substrate of the insulin receptor tyrosine kinase, is a plasma membrane glycoprotein that is expressed in the hepatocyte as two spliced isoforms differing by the presence (full-length) or absence (truncated) of most of the intracellular domain including all phosphorylation sites. Co-expression of full-length pp120, but not its phosphorylation-defective isoforms, increased receptor-mediated insulin endocytosis and degradation in NIH 3T3 fibroblasts. We, herein, examined whether internalization of pp120 is required to mediate its effect on insulin endocytosis. The amount of full-length pp120 expressed at the cell surface membrane, as measured by biotin labeling, markedly decreased in response to insulin only when insulin receptors were co-expressed. In contrast, when phosphorylation-defective pp120 mutants were co-expressed, the amount of pp120 expressed at the cell surface did not decrease in response to insulin. Indirect immunofluorescence analysis revealed that upon insulin treatment of cells co-expressing insulin receptors, full-length, but not truncated, pp120 co-localized with alpha-adaptin in the adaptor protein complex that anchors endocytosed proteins to clathrin-coated pits. This suggests that full-length pp120 is part of a complex of proteins required for receptor-mediated insulin endocytosis and that formation of this complex is regulated by insulin-induced pp120 phosphorylation by the receptor tyrosine kinase. In vitro GST binding assays and co-immunoprecipitation experiments in intact cells further revealed that pp120 did not bind directly to the insulin receptor and that its association with the receptor may be mediated by other cellular proteins.  相似文献   

7.
Spectrin is a widely expressed protein with specific isoforms found in erythroid and nonerythroid cells. Spectrin contains an Src homology 3 (SH3) domain of unknown function. A cDNA encoding a candidate spectrin SH3 domain-binding protein was identified by interaction screening of a human brain expression library using the human erythroid spectrin (alphaI) SH3 domain as a bait. Five isoforms of the alphaI SH3 domain-binding protein mRNA were identified in human brain. Mapping of SH3 binding regions revealed the presence of two alphaI SH3 domain binding regions and one Abl-SH3 domain binding region. The gene encoding the candidate spectrin SH3 domain-binding protein has been located to human chromosome 10p11.2 --> p12. The gene belongs to a recently identified family of tyrosine kinase-binding proteins, and one of its isoforms is identical to e3B1, an eps8-binding protein (Biesova, Z., Piccoli, C., and Wong, W. T. (1997)Oncogene 14, 233-241). Overexpression of the green fluorescent protein fusion of the SH3 domain-binding protein in NIH3T3 cells resulted in cytoplasmic punctate fluorescence characteristic of the reticulovesicular system. This fluorescence pattern was similar to that obtained with the anti-human erythroid spectrin alphaI SigmaI/betaI SigmaI antibody in untransfected NIH3T3 cells; in addition, the anti-alphaI SigmaI/betaI SigmaI antibody also stained Golgi apparatus. Immunofluorescence obtained using antibodies against alphaI SigmaI/++betaI SigmaI spectrin and Abl tyrosine kinase but not against alphaII/betaII spectrin colocalized with the overexpressed green fluorescent protein-SH3-binding protein. Based on the conservation of the spectrin SH3 binding site within members of this protein family and published interactions, a general mechanism of interactions of tyrosine kinases with the spectrin-based membrane skeleton is proposed.  相似文献   

8.
9.
Cell cycle progression is regulated by cAMP in several cell types. Cellular cAMP levels depend on the activity of different adenylyl cyclases (ACs), which have varied signal-receiving capabilities. The role of individual ACs in regulating proliferative responses was investigated. Native NIH 3T3 cells contain AC6, an isoform that is inhibited by a variety of signals. Proliferation of exogenous AC6-expressing cells was the same as in control cells. In contrast, expression of AC2, an isoform stimulated by protein kinase C (PKC), resulted in inhibition of cell cycle progression and increased doubling time. In AC2-expressing cells, platelet-derived growth factor (PDGF) elevated cAMP levels in a PKC-dependent manner. PDGF stimulation of mitogen-activated protein kinases 1 and 2 (MAPK 1,2), DNA synthesis, and cyclin D1 expression was reduced in AC2-expressing cells as compared with control cells. Dominant negative protein kinase A relieved the AC2 inhibition of PDGF-induced DNA synthesis. Expression of AC2 also blocked H-ras-induced transformation of NIH 3T3 cells. These observations indicate that, because AC2 is stimulated by PKC, it can be activated by PDGF concurrently with the stimulation of MAPK 1,2. The elevation in cAMP results in inhibition of signal flow from the PDGF receptor to MAPK 1,2 and a significant reduction in the proliferative response to PDGF. Thus, the molecular identity and signal receiving capability of the AC isoforms in a cell could be important for proliferative homeostasis.  相似文献   

10.
A number of cycling mammalian cells, such as NIH 3T3, contain abundant subsets of cold-stable microtubules. The origin of such microtubule stabilization in nonneuronal cells is unknown. We have previously described a neuronal protein, stable tubule-only polypeptide (STOP), that binds to microtubules and induces cold stability. We find that NIH 3T3 fibroblasts contain a major 42-kDa isoform of STOP (fibroblastic STOP, F-STOP). F-STOP contains the central repeats characteristic of brain STOP but shows extensive deletions of N- and C-terminal protein domains that are present in brain STOP. These deletions arise from differences in STOP RNA splicing. Despite such deletions, F-STOP has full microtubule stabilizing activity. F-STOP accumulates on cold-stable microtubules of interphase arrays and is present on stable microtubules within the mitotic spindle of NIH 3T3 cells. STOP inhibition by microinjection of affinity-purified STOP central repeat antibodies into NIH 3T3 cells abolishes both interphase and spindle microtubule cold stability. Similar results were obtained with Rat2 cells. These results show that STOP proteins have nonneuronal isoforms that are responsible for the microtubule cold stability observed in mammalian fibroblasts.  相似文献   

11.
We have recently reported that the nuclei of B16 melanoma cells are intensely stained with anti-rat vitronectin (Vn) antibody, which reacts with both mouse and rat Vn. In the present study, we characterized the protein immunoreactive with the antibody using NIH3T3 cells, whose nuclei were also stained with the antibody. Western blot analysis showed that a protein with an approximate molecular weight of 75 kDa (p75), which was distinct from Vn, existed in the nuclear fraction, and, more specifically, in the nuclear matrix fraction, of NIH3T3 cells. Screening of an NIH3T3 cDNA library resulted in the isolation of a nearly full-length cDNA clone encoding p75. A database search revealed that the cDNA represents a novel gene. The deduced amino acid sequence showed that the protein is 580 amino acids long and contains two C2H2-type zinc finger motifs and glutamic acid-rich domains in the C-terminal region. When a fusion protein of green fluorescence protein and p75 was expressed in NIH3T3 cells, fluorescence was preferentially observed in the nuclei, demonstrating that the protein has a nuclear localization signal. The p75 protein, termed ZAN75, exhibited DNA-binding activity in a zinc-dependent manner. Southern blot analysis demonstrated that the ZAN75 gene exists in a single copy in the mouse genome and that a closely related gene is also present in chicken, rat, and human. Northern blot analysis showed that the ZAN75 gene is ubiquitously expressed in adult mouse tissues. In the cell cycle of NIH3T3 cells, expression was low in the G0/G1 phase, increased during the G1 phase, and persisted during the S and G2/M phases, suggesting that ZAN75 plays a role in regulating cell growth.  相似文献   

12.
13.
Germline mutations of c-ret, encoding a receptor-type tyrosine kinase, were found to be associated with variants of multiple endocrine neoplasia type 2 (MEN2A, MEN2B), and familial medullary thyroid carcinoma. NIH/3T3 stable transfectants expressing RET with a mutation of MEN2A (MEN2A/RET) or MEN2B (MEN2B/RET) gained a transformed morphology, formed colonies in soft agar, and formed tumors in nude mice. These results confirmed that both MEN2A/RET and MEN2B/RET exert dominant transforming activities in NIH/3T3 cells. However, in contrast to their clinical manifestation, transfectants expressing MEN2A/RET exhibited a higher tumorigenicity in nude mice than transfectants expressing MEN2B/RET may depend on the presence of its ligand and/or substrates that are absent in NIH/3T3 cells. No change in the cellular localization of the mutated RET proteins was observed compared to c-RET. Interestingly, ret activation in NIT/3T3 cells appeared to be associated with up-regulation of homologous gap-junctional intercellular communication and increased expression of a gap-junctional protein, connexin43.  相似文献   

14.
N4G3, a cell line that overexpresses translation initiation factor eIF4G, one of the components of eIF4F, was made by stable transfection of the human eIF4G cDNA into NIH3T3 cells. The cells expressed 80-100 times greater levels of eIF4G mRNA than did NIH3T3 cells. N4G3 cells formed transformed foci on a monolayer of cells, showed anchorage-independent growth, and formed tumors in nude mice. These results indicate that overexpression of eIF4G caused malignant transformation of NIH3T3 cells. It is also known that overexpression of eIF4E, another component of eIF4F, causes transformation of NIH3T3 cells. However, there was no difference in the amount of eIF4E protein between N4G3 and NIH3T3 cells, indicating that cell transformation does not involve a change in eIF4E levels. The results may be due to an effect of eIF4G on translational control of protein synthesis directed by mRNAs having long 5'-untranslated region.  相似文献   

15.
The Raf protein kinases function downstream of Ras guanine nucleotide-binding proteins to transduce intracellular signals from growth factor receptors. Interaction with Ras recruits Raf to the plasma membrane, but the subsequent mechanism of Raf activation has not been established. Previous studies implicated hydrolysis of phosphatidylcholine (PC) in Raf activation; therefore, we investigated the role of the epsilon isotype of protein kinase C (PKC), which is stimulated by PC-derived diacylglycerol, as a Raf activator. A dominant negative mutant of PKC epsilon inhibited both proliferation of NIH 3T3 cells and activation of Raf in COS cells. Conversely, overexpression of active PKC epsilon stimulated Raf kinase activity in COS cells and overcame the inhibitory effects of dominant negative Ras in NIH 3T3 cells. PKC epsilon also stimulated Raf kinase in baculovirus-infected Spodoptera frugiperda Sf9 cells and was able to directly activate Raf in vitro. Consistent with its previously reported activity as a Raf activator in vitro, PKC alpha functioned similarly to PKC epsilon in both NIH 3T3 and COS cell assays. In addition, constitutively active mutants of both PKC alpha and PKC epsilon overcame the inhibitory effects of dominant negative mutants of the other PKC isotype, indicating that these diacylglycerol-regulated PKCs function as redundant activators of Raf-1 in vivo.  相似文献   

16.
BACKGROUND: Both fibroblast-mediated cytokine gene therapy and bone marrow transplantation (BMT) have proven to be efficient protocols for the recovery of bone marrow depression. In this report, the effects of fibroblast-mediated interleukin (IL)-6 gene therapy, in combination with BMT, on the recovery of irradiation-induced bone marrow depression were investigated. METHODS: NIH3T3 fibroblast cells engineered to secrete IL-6 (NIH3T3-IL-6) or NIH3T3 cells transduced with the neomycin gene (NIH3T3-Neo), in combination with 10(7), 10(6), or 10(5) syngeneic bone marrow cells, were implanted into irradiated mice. RESULTS: The platelets and white blood cells in the peripheral blood of the irradiated mice increased greatly 12 days after implantation of NIH3T3-IL-6 cells and BMT, the white blood cell counts were restored to a normal level 32 days after the combined therapy, and the platelet number was obviously higher than that in mice implanted with NIH3T3-Neo and BMT. Twenty and 25 days after the combined therapy, the mice showed accelerated recovery of colony-forming unit (CFU)-granulocyte/macrophages and CFU-megakaryocytes when compared with the mice implanted with NIH3T3-Neo cells and BMT. Ten days after lethal irradiation with gamma rays, the spleens formed more CFU-spleen in mice implanted with NIH3T3-IL-6 cells and BMT than in mice injected with phosphate-buffered saline or NIH3T3-Neo cells. Combined therapy with NIH3T3-IL-6 cell implantation and BMT delayed the survival period of the hematopoietic-depressed mice significantly when compared with therapy with NIH3T3-Neo cell implantation and BMT. CONCLUSIONS: These data demonstrated that the combined therapy of fibroblast-mediated IL-6 gene therapy and BMT could significantly promote the recovery of irradiation-induced hematopoietic depression.  相似文献   

17.
Neuropathy target esterase (NTE) is inhibited by many organophosphorus compounds that induce delayed neuropathy. This study examines two of the most potent NTE inhibitors, 2-octyl-4H-1,3,2-benzodioxaphosphorin 2-oxide (OBDPO) and ethyl octylphosphonofluoridate (EOPF), in cell lines with neural properties (PC-12 and NB41A3) and of nonneural origin (C6 and HeLa). NTE-like esteratic activity is higher in PC-12, HeLa and C6 cells than in NB41A3 cells and in each case is inhibited 50% by OBDPO and EOPF at 0.03-3.4 nM in vitro and by OBDPO at 0.080-36 nM in situ in culture. An NTE-like protein(s) of about 155 kDa is phosphorylated and labeled by [3H-octyl]OBDPO in these cell lines in the same order as their relative NTE esteratic activity. Cytotoxic levels of OBDPO and EOPF (300-500 microM) are generally 10(5) to > 10(7)-fold higher than required for NTE inhibition. PC-12 cells and OBDPO/[3H]OBDPO and EOPF are therefore suitable for research on non-lethal biochemical disruptions from NTE phosphorylation and aging.  相似文献   

18.
19.
20.
Depudecin is a fungal metabolite that reverts the rounded phenotype of NIH 3T3 fibroblasts transformed with v-ras and v-src oncogenes to the flattened phenotype of the nontransformed parental cells. The mechanism of detransformation induced by this agent had not been determined. Here, we demonstrate that depudecin inhibits histone deacetylase (HDAC) activity effectively both in vivo and in vitro. Depudecin induces similar morphological reversion in v-ras transformed NIH 3T3 cells as do other naturally occurring HDAC inhibitors such as trichostatin A or trapoxin. It competitively inhibits the binding of [3H]trapoxin in vitro and the nuclear binding of a trapoxin-coumarin fluorophore in vivo, suggesting that depudecin shares a nuclear binding protein and site on that protein with trapoxin. Furthermore, depudecin induces hyperacetylation of histones in a dose-dependent manner and at concentrations comparable with that required for detransformation. An in vitro histone deacetylase assay, using purified recombinant HDAC1, reveals that depudecin inhibits 50% of the enzyme activity at a concentration of 4.7 microM. These results demonstrate that depudecin is a novel HDAC inhibitor and suggest that its ability to induce morphological reversion of transformed cells is the result of its HDAC inhibitory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号