首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At hydraulic power stations, Pitot tubes have commonly been used to measure flow rates in steel penstocks for performance testing of hydraulic turbines. Due to the difficulties of Pitot tube installation, transit-time ultrasonic flow meters are becoming a popular replacement, but their accuracy is sensitive to velocity profiles that depend on Reynolds numbers and pipe surface roughness. Ultrasonic pulse Doppler flow meters have recently gained favor as suitable tools to measure flow rates in steel penstocks because they can measure instantaneous velocity profiles directly. Field tests were conducted at an actual hydraulic power plant using an ultrasonic pulse Doppler flow meter, and it was found capable of measuring velocity profiles in a large steel penstock with a diameter of over one meter and Reynolds number of more than five million. Furthermore, two ultrasonic transducers were placed on the pipe surface to validate the multi-line measurement of asymmetric flow. Each transducer recorded the velocity profile simultaneously from the pipe centerline to its far wall during plant operation. Velocity profiles were obtained from three-minute measurements to improve the accuracy of flow rate measurements.  相似文献   

2.
超声测沙仪研究   总被引:1,自引:0,他引:1  
黄河水中含有大量泥沙是泥沙固体颗粒分散在液体中形成的混合物,称悬浮液.超声波在悬浮液的声速和声衰减系数不但取决于组成各相自身的性质和含量,而且受到相互之间相互作用的影响.悬浮液的声衰减分为三种主要类型:吸收衰减、散射衰减和扩散衰减.前两类衰减取决于媒质的特性,而后一类衰减则由声源特性而引起.影响超声波测量含沙量准确度的主要因素有:含沙浓度和粒径级配;浑水中气泡等杂质;温度变化等.采用超声衰减法测量含沙量,并利用超声波双频测量含沙平均粒径修正含沙量可有效提高测量精度.  相似文献   

3.
Two-dimensional ultrasonic speckle correlation velocimetry (USV) is a new technique that allows imaging of moving scattering media, at a high frame-rate. In this paper we apply the technique to determine two-dimensional particle velocity profiles of multiphase flows. Experiments are realized with suspensions of Sonazoid (medical contrast agent) and Magnetite (Fe3O4) in water. All measurements are performed in a vertical pipe with the flow moving downwards. The two-dimensional particle velocity profiles are then compared with a reference liquid volume flow velocity. As expected from theory, the heavier Magnetite particles have slightly higher velocity than the liquid, whereas the contrast agent simply follows the liquid motion.The proposed technique can be used in combination with other techniques to measure the mass flow of the solid phase, in solid/liquid multiphase flow. This is generally more interesting than measuring the bulk mass or volume flow.  相似文献   

4.
A non-destructive method of measuring flow field of opaque fluids is presented for turbulent convection of liquid metal mercury. Two important properties of the turbulent state, namely 2D velocity profiles and energy spectrum, are successfully measured for Rayleigh-Bénard convection of mercury by using ultrasonic Doppler velocimetry. A few key techniques for the method are also explained.  相似文献   

5.
Ultrasonic velocimetry based on the Doppler shift effect accurately provides quasi-instantaneous flow fields for fluids with a sufficiently high acoustic scattering level. However, ultrasonic velocity instruments are known to perform poorly in clear water with low acoustic scattering level, which are frequent conditions in laboratory applications. This work confirms a technique to solve the problem by seeding the flow with micro hydrogen bubbles, generated by means of electrolysis.This paper investigates the influence of gas bubbles density on the quality of the ultrasound Doppler based velocity profiles in an open channel flow. The bubbles are generated by electrolysis of water using different magnitudes of electrical current. The estimation of the number of bubbles in the measurement volume confirms that the bubble diameter is similar to that of the wire used for electrolysis. This enables to determine the minimum density of gas bubbles needed to obtain a reasonably good echo and therefore an accurate velocity profile.  相似文献   

6.
Clamp-on ultrasonic flow metering can provide a non-invasive and portable means for flow measurement. However, it indicates flow rates with low measurement accuracy at low flow velocity in pipe flows. Typical accuracy of the clamp-on ultrasonic flow metering amounts as low as ±1% if the flow velocity in a pipe is greater than 0.5 m/s. The accuracy can be increased greater than ±2% if the flow velocity is lowered smaller than 0.5 m/s. Inner pipe diameter can be also an influential factor in flow metering when the exact value of the inner diameter is not known. The inner pipe diameter cannot be found if the pipe is too large to measure or if there are erosions or adhesions on the inner pipe surface due to small particles in the flow. These shortcomings of the clamp-on ultrasonic flow metering can be overcome by combining two transit times along a Z-shaped and a V-shaped ultrasonic path. This technique is termed combined V/Z clamp-on ultrasonic flow metering. With the water flow standard system in KRISS, this combined technique exhibited intermediate performance between the two flow metering techniques along the Z-shaped and the V-shaped ultrasonic paths. Notably, the combined technique showed better performance (expanded uncertainty less than 0.76%, k = 2) than the two flow metering techniques (1.61% and 1.17%, k = 2) in the flow range of (100–400) m3/h with pipe diameter of 250 mm.  相似文献   

7.
When relative motion occurs between a liquid and a solid, the two phases carry electric charge with opposite signs. The created charge easily accumulates in the liquid, and the amount of the charge carried in an insulated liquid refers to many factors, such as contact area with the solid surface, the contact time, and so forth. However, current theories agree that the amount of charge created during flow electrification is proportional to the contact surface. In this paper, the classical wall current theory is applied to establish an interfacial electrical double-layer model of flow electrification phenomena when an insulated liquid passes over metal pipe surface. Meanwhile, in conjunction with charge relaxation function, the relation between the charge density and flow velocity, the contact time and the contact area is obtained during the liquid flowing process. The experimental result demonstrates that the flowing charge carried in the insulated liquid is not simply proportional to the contact area, but has a non-linear dependence on the contact area and the contact time. Moreover, down flow experimental equipment pipes of different length and diameter, and dielectric hydraulic oil VG46 are used in an experimental study of laminar flow, in order to understand electrification phenomena in dielectric liquid flowing over metal pipes of different length and aperture. If they both increase linearly, charge relaxation will increase exponentially. As a result, the test result verifies related theoretical analysis, and the method given provides a theoretical basis to analyze interfacial electrical phenomena.  相似文献   

8.
粉煤灰管道气力输送特性的研究   总被引:3,自引:0,他引:3  
包福兵  林建忠  吴法理  林江 《流体机械》2005,33(7):15-19,59
对浓相粉煤灰气力输送系统三维流场进行了数值模拟,给出了流场特性,分析了颗粒对气相的影响,描述了颗粒沉降的具体过程。研究表明单位长度压力损失与速度平方、体积浓度成正比,而与管道长度无关;颗粒直径越大,压力损失就越小;颗粒的沉降与运动速度、颗粒直径和管道长度有关。  相似文献   

9.
为了实现对金属材料中微纳米级裂纹的超声检测,建立了非线性超声检测系统,研究了超声波与金属材料中裂纹的相互作用以及超声波的畸变效应.介绍了固体中普遍存在的超声非线性现象;以金属材料中的微纳米级裂纹为例研究了裂纹与超声波相互作用产生的畸变效应;在分析超声波产生畸变的基础上,描述了超声高次谐波振幅的测量方法.最后,以金属材料...  相似文献   

10.
大采高液压支架的供液管路的工作压力为23~32.5 MPa,通流直径为38~60 mm,管路长度约1000~1500 m,管路体积模量使供液管路具有压力明显、流量响应滞后现象,导致液压支架系统速度、位移动态响应差。以液压支架大通径高压供液管路为试验对象,当压力为5~25 MPa时,管路体积模量值1300 MPa,依据公式得到胶管体积模量约为恒定值2700 MPa,与乳化液体积模量接近。建立了AMESim管路模型和液压支架系统模型。仿真结果表明,供液管路体积模量越小,立柱位移、速度和压力响应越慢;当管路体积模量为1300 MPa时,立柱位移、速度和压力响应时间分别为0.1 s, 0.2 s, 0.05 s,立柱缸响应滞后较明显。  相似文献   

11.
This paper proposes a measurement technique for two-phase bubbly and slug flows using ultrasound. In order to obtain both liquid and gas velocity distributions simultaneously, a new technique for separating liquid and gas velocity data is developed. The technique employs a unique ultrasonic transducer referred to as multi-wave transducer (TDX). The multi-wave TDX consists of two kinds of ultrasonic piezoelectric elements which have different resonant frequencies. The central element of 3 mm diameter has a basic frequency of 8 MHz and the outer element has a basic frequency of 2 MHz. The multi-wave TDX can emit the two ultrasonic frequencies independently. In our previous investigations, both elements were connected with two ultrasonic velocity profile (UVP) monitors to measure liquid and bubble velocity distributions. However, the technique was limited to the measurement of bubbly flows at low void-fraction. Furthermore, it was impossible to synchronize the instantaneous velocities of liquid and bubbles because of the facility limitation. In order to overcome these disadvantages, cross-correlation method is employed for the measurements in this study. In order to apply the technique to flow measurements, ultrasound pressure fields are measured. As a result, it is found that the TDX must be set 20 mm away from the test section. The technique is applied to measuring bubbly and slug flows. By the combination of 2 and 8 MHz ultrasonic echo signals, the echo signals are distinguished between reflected from particles and bubbles. Compared with the results of obtaining with the multi-wave method and a high-speed camera, it is confirmed that the technique can separate the information of liquid and gas phases at a sampling rate of 1000 Hz.  相似文献   

12.
An ultrasonic flow meter for small pipes is presented. For metal pipe diameter smaller than 10 mm, clamp-on ultrasonic contrapropagation flow meters may encounter difficulties if cross talk or the short acoustic path contributes to large uncertainty in transit time measurement. Axial inline flow meters can avoid these problems, but they may introduce other problems if the transducer port is not properly positioned. Three types of pipe connecting tees are compared using the computational fluid dynamics (CFD) method. CFD shows the 45° tee has more uniform velocity distribution over the measuring section. A prototype flow meter using the 45° tee was designed and tested. The zero flow experiment shows the flow meter has a maximum of 0.002 m∕s shift over 24 h. The flow meter is calibrated by only 1 meter factor. After calibration, inaccuracy lower than 0.1% of reading was achieved in the laboratory, for a measuring range from 15 to 150 g∕s (0.29 to 2.99 m∕s; Re = 2688 to 26,876).  相似文献   

13.
为进一步探索液膜空化对密封性能的影响,以螺旋槽液膜密封为研究对象,基于JFO空化模型及坐标变换建立其数学模型并采用有限体积法离散求解。探讨Reynolds和JFO两空化边界下的密封速度场和流量场分布规律以及空穴压力对密封性能如承载能力和摩擦扭矩等影响。结果表明:空穴区的形成具有动态性,速度矢量在空穴区内部为0,在液膜始破边界和靠近内径处的液膜重生边界上速度矢量朝向空穴区,而在靠近外径处的液膜重生边界上速度矢量远离空穴区;液膜流量场主要集中于槽区内且JFO空化边界下的流量场分布比Reynolds空化边界下值更为密集;空穴压力的增加可提升液膜承载能力但增幅较小,而对摩擦扭矩的影响可忽略不计。  相似文献   

14.
针对微细粉体“团聚”导致粉磨极限的问题,在液相环境下利用超声的分散和空化冲击作用,开展了近壁面超声空化微射流对微细颗粒破碎作用的研究。通过理论计算空化微射流冲击微细颗粒破碎的有效作用范围,从空化泡溃灭速度的角度分析了超声频率、声压幅值、介质尺寸等主要参数对微射流强度的影响;结合物料质量浓度、介质尺寸、介质面积和功率等影响因素的微细颗粒超声空化破碎正交试验,并利用SEM观测粉体形貌,分析了颗粒中位粒径D50、10%体积累积粒径D10和比表面积(SSA)等分布特性。参数组合优化后获得了粒径小于800目的微细颗粒,破碎率高达79.35%;粒径大于10 000目的极细颗粒产率高达12.84%。从提高微细颗粒破碎率的角度,发现介质面积是主要影响因素,功率次之,其次为介质尺寸和物料质量浓度。试验结果与理论研究成果基本一致,表明优化超声空化微射流参数与增加介质壁面面积等方法可有效提高微细颗粒的破碎率。  相似文献   

15.
The effect of different factors on the ultrasonic wave velocity is considered. These factors depend on the rail fabrication technology and the metal structure. Individual parameters of nonmetallic inclusions with the strongest effect on the wave propagation velocity are distinguished. The relation between the ultrasonic wave velocity and the nonmetallic inclusion content in currently produced rails and their mechanical characteristics is analyzed.  相似文献   

16.
Multipath ultrasonic flowmeters with large diameter are widely used in industry. And their measurement performances are sensitive to velocity profiles in conduits. Gauss–Jacobi and Optimized Weighted Integration for Circular Sections (OWICS) method are commonly applied in flow measurement of multipath ultrasonic flowmeters, both of which assume ideal flow in pipes. They are not proper for non-ideal flow measurement. Therefore, an improved numerical integration method for flowrate based on Gauss quadrature is proposed. With this method, optimum relative path heights and corresponding weights are determined according to specific disturbed flows. By comparison Gauss–Jacobi, OWICS with the improved method, the validity of the proposed method is verified for typical disturbed flows based on both theoretical analysis and experiments, and measurement performances of ultrasonic flowmeters are improved significantly.  相似文献   

17.
A piezoelectric centrifugal pump was developed previously to overcome the low frequency responses of piezoelectric pumps with check valves and liquid reflux of conventional valveless piezoelectric pumps. However, the electro-mechanical-fluidic analysis on this pump has not been done. Therefore, multi-field analysis and experimental verification on piezoelectrically actuated centrifugal valveless pumps are conducted for liquid transport applications. The valveless pump consists of two piezoelectric sheets and a metal tube with piezoelectric elements pushing the metal tube to swing at the first bending resonant frequency. The centrifugal force generated by the swinging motion will force the liquid out of the metal tube. The governing equations for the solid and fluid domains are established, and the coupling relations of the mechanical,electrical and fluid fields are described. The bending resonant frequency and bending mode in solid domain are discussed, and the liquid flow rate, velocity profile, and gauge pressure are investigated in fluid domain. The working frequency and flow rate concerning different components sizes are analyzed and verified through experiments to guide the pump design. A fabricated prototype with an outer diameter of 2.2 mm and a length of80 mm produced the largest flow rate of 13.8 m L/min at backpressure of 0.8 k Pa with driving voltage of 80 Vpp. Bysolving the electro-mechanical-fluidic coupling problem,the model developed can provide theoretical guidance on the optimization of centrifugal valveless pump characters.  相似文献   

18.
This paper proposes a new technique that enables the measurement of the velocity vector in multi-dimensions on a line of the flow field. A system to achieve this goal was developed based on the ultrasonic velocity profiling by using multiple transducers. A two-dimensional system was constructed and successfully applied to an actual flow field for two-dimensional velocity vector measurements. To estimate the influence of the existence of a wall, acoustic field under the developed system was calculated by solving two-dimensional wave equation and then the focal point of an ultrasonic beam was determined to optimize the system. The system was applied to measure the two-directional velocity components of a periodic velocity fluctuation in the wake of a cylinder as an example of unsteady flow. Temporal variation of velocity vector profiles well represent the velocity fluctuation, and vorticity distribution, which is obtained from the spatial distribution of velocity vector, well represents the vertical motion in the wake.  相似文献   

19.
微机化的超声波气体流量在线检测仪   总被引:6,自引:1,他引:6  
本文阐述了用超声波测气体流量原理及相应的校准方法,并研制了相应的微机化的智能仪。该仪器用声时,声衰减及数字处理技术联合去除绕管道传播及其它干扰的声波,并采用了一种高精度声时测量方法,以提高流量测量精度。该仪器可用于大中型管径中低频脉动气流及稳态气流的流量测量。  相似文献   

20.
高品质金属粉末是众多制造领域中的基础材料,微细粉末成型的关键技术在于气雾化制备阶段,而喷嘴及导液管结构和雾化工艺参数对气雾化粉末的质量有重要影响。基于高速射流流体动力学的数值模拟方法研究了雾化压力、雾化气体温度、导液管下口直径与伸出长度对配备下限流导液管环缝喷嘴雾化能力的影响,通过喷盘流场检测验证模型的可靠性。结果表明:环缝喷嘴装配下限流导液管临界入口压力为128.1 kPa,雾化压力2.0 MPa时既能有效增大雾化腔内的气体最大速度和降低最低温度,又能防止过高压力造成返喷而影响气雾化顺行。此外,在极限雾化压力2.0 MPa下,通过增大雾化气体温度、下限流导液管下口直径由5 mm降低至1 mm以及伸出长度由0 mm增大至2 mm均能继续提升气液质量流速比而提升其雾化能力。生产实践也证实了模型的预瞻性,在此优化工艺下生产顺行且粉末粒度D50仅为23.84μm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号