首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Flurbiprofen axetil (FA)‐loaded coaxial electrospun poly(vinyl pyrrolidone) (PVP)–nanopoly(lactic‐co‐glycolic acid) core–shell composite nanofibers were successfully fabricated by a facile coaxial electrospinning, and an electrospun drug‐loaded system was formed for anti‐adhesion applications. The FA, which is a kind of lipid microsphere nonsteroidal anti‐inflammatory drug, was shown to be successfully adsorbed in the PVP, and the formed poly(lactic‐co‐glycolic acid) (PLGA)/PVP/FA composite nanofibers exhibited a uniform and smooth morphology. The cell viability assay and cell morphology observation revealed that the formed PLGA/PVP/FA composite nanofibers were cytocompatible. Importantly, the loaded FA within the PLGA/PVP coaxial nanofibers showed a sustained‐release profile and anti‐adhesion activity to inhibit the growth of the IEC‐6 and NIH3T3 model cells. With the significantly reduced burst‐release profile, good cytocompatibility, and anti‐adhesion activity, the developed PLGA/PVP/FA composite nanofibers were proposed to be a promising material in the fields of tissue engineering and pharmaceutical science. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41982.  相似文献   

2.
The development of tissue engineering in the field of orthopedic surgery is booming. Two fields of research in particular have emerged: approaches for tailoring the surface properties of implantable materials with osteoinductive factors as well as evaluation of the response of osteogenic cells to these fabricated implanted materials (hybrid material). In the present study, we chemically grafted insulin onto the surface of hydroxyapatite nanorods (nHA). The insulin-grafted nHAs (nHA-I) were dispersed into poly(lactide-co-glycolide) (PLGA) polymer solution, which was electrospun to prepare PLGA/nHA-I composite nanofiber scaffolds. The morphology of the electrospun nanofiber scaffolds was assessed by field emission scanning electron microscopy (FESEM). After extensive characterization of the PLGA/nHA-I and PLGA/nHA composite nanofiber scaffolds by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectrometry (EDS), and transmission electron microscopy (TEM), the PLGA/nHA-I and PLGA/nHA (used as control) composite nanofiber scaffolds were subjected to cell studies. The results obtained from cell adhesion, alizarin red staining, and Von Kossa assay suggested that the PLGA/nHA-I composite nanofiber scaffold has enhanced osteoblastic cell growth, as more cells were proliferated and differentiated. The fact that insulin enhanced osteoblastic cell proliferation will open new possibilities for the development of artificial scaffolds for bone tissue regeneration.  相似文献   

3.
Poly[(l ‐lactide)‐co ‐(? ‐caprolactone)] (PLCL) and poly[(l ‐lactide)‐co ‐glycolide] (PLGA) copolymers are widely used in neural guide tissue regeneration. In this research, the surface modification of their hydrophilicity was achieved using plasma treatment. Attachment and proliferation of olfactory ensheathing cells on treated electrospun membranes increased by 26 and 32%, respectively, compared to the untreated PLCL and PLGA counterparts. Cells cultivated on both the PLCL and PLGA membranes showed high viability (>95%) and healthy morphologies with no evidence of cytotoxic effects. Cells grown on treated electrospun fibres displayed significant increases in mitochondrial activity and reductions in membrane leakage when compared to untreated samples. The results suggested that plasma treatment of the surface of the polymers enhanced both cell viability and growth without incurring any cytotoxic effects. © 2017 Society of Chemical Industry  相似文献   

4.
二维过渡金属碳/氮化物(MXene)是一种新型二维碳化纳米材料,具有横向比率大、传输途径短和纳米通道多等独特优点。该文首先综述了MXene/聚偏氟乙烯(PVDF)膜的制备工艺,并分析了MXene与PVDF膜的电性能、机械性能、热性能、抗菌性能、化学稳定性等性能之间的调控关系;然后综述了MXene/PVDF复合膜在分离膜、高介电膜、电磁屏蔽膜等领域中的应用进展;最后对MXene/PVDF膜的发展方向进行了展望:在当前的研究阶段中,对PVDF膜进行抽滤处理仍然是发挥MXene优异性能的有效途径,这是一个主要的研究手段;同时,进一步深入研究MXene对PVDF膜定向调控的多功能性机制,有助于更好地理解MXene与PVDF膜之间的相互作用规律;此外,应该加强应用型研究,形成较完善的实际应用体系,这有助于更好地理解MXene/PVDF复合膜的自身性质和性能,推动MXene/PVDF复合膜在各领域的应用研究和实际发展。  相似文献   

5.
In this study, vascular stents were fabricated from poly (lactide-ɛ-caprolactone)/collagen/nano-hydroxyapatite (PLCL/Col/nHA) by electrospinning, and the surface morphology and breaking strength were observed or measured through scanning electron microscopy and tensile tests. The anti-clotting properties of stents were evaluated for anticoagulation surfaces modified by the electrostatic layer-by-layer self-assembly technique. In addition, nano-composite scaffolds of poly (lactic-co-glycolic acid)/polycaprolactone/nano-hydroxyapatite (PLGA/PCL/nHA) loaded with the vascular stents were prepared by thermoforming-particle leaching and their basic performance and osteogenesis were tested in vitro and in vivo. The results show that the PLCL/Col/nHA stents and PLGA/PCL/nHA nano-composite scaffolds had good surface structures, mechanical properties, biocompatibility and could guide bone regeneration. These may provide a new way to build vascularized-tissue engineered bone to repair large bone defects in bone tissue engineering.  相似文献   

6.
Typical electrospun polylactic acid (PLA) membranes revealing potential hydrophobicity and inflammation from acid release during degradation are major drawbacks as an ideal guided tissue regeneration (GTR) barrier. This study investigated the in vitro degradation properties of electrospun PLA/beta‐tricalcium phosphate (β‐TCP) membranes treated by polyethylene oxide dip‐coating process. After surface modification, the membranes revealed good wettability in contact angle measurement. The addition of β‐TCP can render good pH buffering properties for electrospun PLA membranes during the in vitro degradation test. The mechanical properties of the hybrid membrane showed no significant difference in suture pullout force at a dried or wetted state. For cell adhesion and proliferation, the membranes with hydrophilicity can enhance the cell attachment at early stage. Overall, these results show that electrospinning combined with dip coating is a feasible processing technology for producing hydrophilic fibrous GTR membranes. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers.  相似文献   

7.
One of the major problems of nanofiber scaffold or other devices like cardiovascular or blood‐contacting medical devices is their weak mechanical properties and the lack of hemocompatibility of their surfaces. In this study, halloysite nanotubes (HNTs) and carbon nanotubes (CNTs) were incorporated within poly(lactic‐co‐glycolic acid) (PLGA) nanofibers and the mechanical property and hemocompatibility of both types of composite nanofibers with different doping levels were thoroughly investigated. The morphology and internal distribution of the doped nanotubes within the nanofibers were characterized using scanning electron microscopy and transmission electron microscopy. Mechanical properties of the electrospun nanofibers were tested using a material testing machine. The hemocompatibility of the composite nanofibers was examined through hemolytic and anticoagulant assay, respectively. We show that the doped HNTs or CNTs are distributed in the nanofibers with a coaxial manner and the incorporation of HNTs or CNTs does not significantly change the morphology of the PLGA nanofibers. Importantly, the incorporation of HNTs or CNTs within PLGA nanofibers significantly improves the mechanical property of PLGA nanofibers, and PLGA nanofibers with or without doping of the HNTs and CNTs display good anticoagulant property and negligible hemolytic effect to human red blood cells. With the enhanced mechanical property, great hemocompatibility, and previously demonstrated biocompatibility of both HNTs‐ and CNTs‐doped composite PLGA nanofibers, these composite nanofibers may be used as therapeutic artificial tissue/organ substitutes for tissue engineering applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
《Ceramics International》2023,49(12):19578-19594
Bone defects have attracted much attention for a long time and seriously affect the function of the motor system. At present, the application of biological materials and biological scaffolds implanted in the defect site to promote the healing of bone defects is the main treatment method for bone defect repair. In recent years, the emergence of two-dimensional materials has brought new opportunities for biological materials. As a two-dimensional nanomaterial based on ceramics, MXene has unique physical and chemical properties, such as electrical conductivity, hydrophilicity, and antibacterial and photothermal effects, which make it a very broad application prospect in bone defect biomaterials. This review will start from the pathophysiological changes of bone defects and intervention factors of bone defect repair, introduce in detail the preparation and modification methods, physical and chemical properties and biological characteristics of the two-dimensional material MXene, and review the application status and research progress of MXene in bone defect repair and bone tissue regeneration. This provides a reference for the further application of MXene in bone defect repair.  相似文献   

9.
The purpose of this study is to overcome the poor dimensional stability of poly(vinylidene fluoride) (PVDF)-based electrospun membranes for polymer electrolytes, a new type of composite fibrous membranes based on PVDF/poly(2-acrylamido-2-methylpropanesulfonic acid lithium) (PAMPSLi) blend systems with different blend ratios were fabricated by electrospinning method. Morphology of the composite fibrous membranes was evaluated by scanning electron microscopy. Average diameters of the membranes were less than 250 nm, which were far less than that of pure PVDF fibrous membrane (400 nm). Fourier transform infrared spectroscopy and Raman scattering were used to characterize the interactions of two polymers. Wide-angle X-ray diffraction and differential scanning calorimetry techniques were applied to investigate the crystal structure of composite fibrous membranes. Owning to the good miscibility between PVDF and PAMPSLi, no phase-separated microstructure was observed in composite fibrous membranes. The membranes possessed a good wettability by liquid electrolytes and exhibited an excellent dimensional stability even at high loading of electrolytes. The polymer electrolyte showed the ionic conductivity of 3.45 × 10?3 S/cm at room temperature and electrochemical stability up to 5.4 V for the blend ratio of 5/1. PVDF/PAMPSLi (5/1)-based polymer electrolyte was observed much more suitable than polymer electrolytes with other ratios of PVDF/PAMPSLi for application in high-performance lithium rechargeable batteries.  相似文献   

10.
Central and peripheral nerve injuries can lead to permanent paralysis and organ dysfunction. In recent years, many cell and exosome implantation techniques have been developed in an attempt to restore function after nerve injury with promising but generally unsatisfactory clinical results. Clinical outcome may be enhanced by bio-scaffolds specifically fabricated to provide the appropriate three-dimensional (3D) conduit, growth-permissive substrate, and trophic factor support required for cell survival and regeneration. In rodents, these scaffolds have been shown to promote axonal regrowth and restore limb motor function following experimental spinal cord or sciatic nerve injury. Combining the appropriate cell/exosome and scaffold type may thus achieve tissue repair and regeneration with safety and efficacy sufficient for routine clinical application. In this review, we describe the efficacies of bio-scaffolds composed of various natural polysaccharides (alginate, chitin, chitosan, and hyaluronic acid), protein polymers (gelatin, collagen, silk fibroin, fibrin, and keratin), and self-assembling peptides for repair of nerve injury. In addition, we review the capacities of these constructs for supporting in vitro cell-adhesion, mechano-transduction, proliferation, and differentiation as well as the in vivo properties critical for a successful clinical outcome, including controlled degradation and re-absorption. Finally, we describe recent advances in 3D bio-printing for nerve regeneration.  相似文献   

11.
A biomimetic organic–inorganic composite system comprising of microspheres fabricated from combination of a biodegradable polymer poly(lactide-co-glycolide) (PLGA) and bioactive mesoporous silica (SBA-15) has been developed through sintering technique for bone regeneration applications. The morphological and structural properties of the SBA-15/PLGA composite scaffold were evaluated using electron microscopy and fourier transform infrared spectroscopy and the results showed spherical morphology and composite nature. The presence of mesopores in the silica was confirmed through nitrogen adsorption–desorption isotherms. The surface area and pore size of mesoporous silica were found to be 792 m2 g?1 and 3.7 nm, respectively. The thermal characteristics of the SBA-15/PLGA composites studied using thermogravimetry analysis shows a weight loss of around 80% with the degradation occurring at 324?°C. The prepared scaffold is also found to support the adhesion and proliferation of osteoblast cells. The expression of specific bone markers is significantly enhanced in the SBA-15/PLGA composite scaffold when compared with the pristine polymeric scaffold indicating the positive effect of mesoporous silica. Hence, these SBA-15/PLGA composite scaffolds can be explored further for bone regeneration applications.  相似文献   

12.
Lithium aluminum titanium phosphate (LATP)/polyacrylonitrile (PAN) composite fiber-based membranes were prepared by electrospinning dispersions of LATP particles in PAN solutions. The electrolyte uptakes of the electrospun LATP/PAN composite fiber-based membranes were measured and the results showed that the electrolyte uptake increased as the LATP content increased. The lithium ion conductivity, the electrochemical oxidation limit and the interface resistance of liquid electrolyte-soaked electrospun LATP/PAN composite fiber-based membranes were also measured and it was found that as the LATP content increased, the electrospun LATP/PAN composite fiber-based membranes had higher lithium ion conductivity, better electrochemical stability, and lower interfacial resistance with lithium electrode. Additionally, lithium//1 M LiPF6/EC/EMC//lithium iron phosphate cells using LATP/PAN composite fiber-based membranes as the separator demonstrated high charge/discharge capacity and good cycle performance.  相似文献   

13.
In this study, electrospun biocompatible nanofibers with random orientation were prepared by physically blending poly(vinyl alcohol)‐stilbazol quaternized (PVA‐SbQ) with zein in acetic acid solution for wound healing. PVA‐SbQ was used as the foundation polymer as well as crosslinking agent, blended with zein to achieve desirable properties such as improved tensile strength, surface wettability, and in vitro degradable properties. Moreover, vaccarin drug was incorporated in situ into electrospun nanofibrous membranes for cell viability and cell attachment. The addition of vaccarin showed great effects on the morphology of nanofiber and enhanced cell viability and proliferation in comparison with composite nanofibers without drug. The presence of PVA‐SbQ, zein, and vaccarin drug in the nanofibrous membranes exhibited good compatibility, hydrophilicity, and biocompatibility and created a moist environment to have potential application for wound healing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42565.  相似文献   

14.
《Ceramics International》2022,48(2):2345-2354
Vanadium pentoxide (V2O5) is an excellent electrode material for electrochemical capacitor (ECCs) applications, but its lower electrical conductivity is the primary obstacle that restricts its practical applications. This obstacle can be eliminated by forming its nanohybrid (NCs) with a highly capacitive and conductive matrix such as MXene. MXene is a new two-dimensional (2D) material with good electronic conductivity and a larger specific surface area, making it a very suitable substrate for composite formation. Unfortunately, the two-dimensional MXene sheets stacked quickly, limiting their specific surface area and charge/mass transport properties. Here we used the hydrothermal approach to fabricate V2O5 nanowires (NWs) and form their nanohybrid with MXene via the ultrasound route. To assess electrochemical suitability, the fabricated samples were loaded onto a carbon cloth (CC) and used as a working electrode in the half-cell configuration. The nanohybrid (V2O5/MXene) sample showed a good specific capacity (Csp) of 768 F/g (at 1 A/g) because of its greater surface area, hybrid composition, excellent electrical conductivity, and passive nanostructure. It also showed superior cyclic, electrochemical and mechanical capability and maintained a specific capacity of 93.3%, even after completion of 6000 GCD tests. In addition, the nanohybrid sample electrode also exhibits superb rate performance and lost only 14.4% of its initial specific capacity on increasing the applied current density from 1 to 5 A/g. There is no doubt that V2O5 NWs inter-stack between MXene nanosheets to develop effective interface interaction and suppress their stacking.  相似文献   

15.
Practical application of forward osmosis (FO) membranes is beset by low water flux and vulnerability of selective polyamide (PA) layers. Herein, novel composite membranes were fabricated with multilayered PA via cyclic interfacial polymerization (IP) on electrospun polyethersulfone (PES) nanofiber substrates to realize high performance FO. The membrane fabrication conditions were optimized detailedly with respect to the morphologies, physicochemical properties, and FO performances. It is indicated that the PES concentration has great impacts on the morphology, thickness, and fiber diameter of the electrospun substrates and the optimal concentration is proved to be 26 wt %. After multilayered IP, the membrane thickness, surface hydrophilicity, and mechanical strength increased with IP cycles. The optimized FO membranes with two PA layers show much higher water flux and membrane selectivity compared with the commercial thin film composite membranes, holding great promise for water purification and seawater desalination. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47247.  相似文献   

16.
17.
Chitosan, a naturally occurring polysaccharide with abundant resources, has been extensively exploited for various biomedical applications, typically as wound dressings owing to its unique biocompatibility, good biodegradability and excellent antibacterial properties. In this work, composite nanofibrous membranes of chitosan (CS) and silk fibroin (SF) were successfully fabricated by electrospinning. The morphology of electrospun blend nanofibers was observed by scanning electron microscopy (SEM) and the fiber diameters decreased with the increasing percentage of chitosan. Further, the mechanical test illustrated that the addition of silk fibroin enhanced the mechanical properties of CS/SF nanofibers. The antibacterial activities against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) were evaluated by the turbidity measurement method; and results suggest that the antibacterial effect of composite nanofibers varied on the type of bacteria. Furthermore, the biocompatibility of murine fibroblast on as-prepared nanofibrous membranes was investigated by hematoxylin and eosin (H&E) staining and MTT assays in vitro, and the membranes were found to promote the cell attachment and proliferation. These results suggest that as-prepared chitosan/silk fibroin (CS/SF) composite nanofibrous membranes could be a promising candidate for wound healing applications.  相似文献   

18.
The relatively large pore size of electrospun membranes might limit their application for direct contact membrane distillation (DCMD). Incorporation of ionic liquid is a potential approach to decrease the pore size of electrospun membranes, which was attributed to the increased conductivity of electrospinning solution. In this study, a novel nanofibrous membrane based on the blends of poly(vinylidene fluoride) (PVDF), polytetrafluoroethylene (PTFE) and ionic liquid (BMIMPF6) was fabricated and applied for the DCMD. The effects of the BMIMPF6 on the morphology, pore size and DCMD performance of the PVDF-PTFE nanofibrous membrane were investigated. Compared with neat (PVDF-PTFE) membranes (average pore size: 0.93 μm), the incorporation of BMIMPF6 resulted in a smaller mean pore diameter (0.58 μm). The liquid entry pressure value of the modified composite membrane also increased from 62.75 kPa (neat) to 83 kPa, due to the decreased pore size. The composite membrane exhibited a longer lifespan (about 26 h) than neat membrane during long-term DCMD process, which makes this composite membrane a promising candidate for DCMD application. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48467.  相似文献   

19.
The present study evaluates the in vitro biomedical performance of an electrospun, flexible, anisotropic bilayer with one layer containing a collagen to mineral ratio similar to that in bone. The double membrane consists of a poly(lactide-co-glycolide) (PLGA) layer and an amorphous calcium phosphate (a-CaP)/collagen (Col)/PLGA layer. In vitro biomineralisation and a cell culture study with human mesenchymal stem cells (hMSC) were conducted to characterise such membranes for possible application as biomaterials. Nanofibres with different a-CaP/Col/PLGA compositions were synthesised by electrospinning to mimic the actual composition of bone tissue. Immersion in simulated body fluid and in cell culture medium resulted in the deposition of a hydroxyapatite layer. Incubation of hMSC for 4 weeks allowed for assessment of the proliferation and osteogenic differentiation of the cells on both sides of the double membrane. Confocal laser scanning microscopy was used to observe the proper adhesion of the cells. Calcium and collagen content was proven by Alizarin red S and Sirius red assays. Acute cytotoxic effects of the nanoparticles or the chemicals used in the scaffold preparation could be excluded based on viability assays (alamarBlue and alkaline phosphatase activity). The findings suggest possible application of such double membranes is in treatment of bone defects with complex geometries as wound dressing material.  相似文献   

20.
Functional recovery after peripheral nerve injury (PNI) is poor, mainly due to the slow and incomplete regeneration of injured axons. Experimental therapies that increase the excitability of the injured axons have proven remarkably successful in promoting regeneration, but their clinical applicability has been limited. Bioluminescent optogenetics (BL-OG) uses luminopsins, fusion proteins of light-generating luciferase and light-sensing ion channels that could be used to increase neuronal excitability if exposed to a suitable substrate. Excitatory luminopsins were expressed in motoneurons of transgenic mice and in wildtype mice transduced with adeno-associated viral vectors. Intraperitoneal administration of coelenterazine (CTZ), a known luciferase substrate, generated intense bioluminescence in peripheral axons. This bioluminescence increased motoneuron excitability. A single administration of CTZ immediately after sciatic nerve transection and repair markedly enhanced motor axon regeneration. Compound muscle action potentials were 3–4 times larger than controls by 4 weeks after injury. The results observed with transgenic mice were comparable to those of mice in which the luminopsin was expressed using viral vectors. Significantly more motoneurons had successfully reinnervated muscle targets four weeks after nerve injury in BL-OG treated mice than in controls. Bioluminescent optogenetics is a promising therapeutic approach to enhancing axon regeneration after PNI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号