首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the main goal is to obtain montmorillonite nanocomposites of polypropylene (PP). To achieve this goal, a two‐phase study was performed. In the first part of the work, organomodified clay (OMMT) was synthesized and characterized. Octadecyltrimethylammonium bromide (ODTABr) cationic surfactant was added to the clay (Na‐activated montmorillonite, MMT) dispersions in different concentrations in the range of 5 × 10?5–1 × 10?2 mol/L. Rheologic, electrokinetic, and spectral analyses indicated that ODTABr has interacted with MMT at optimum conditions when the concentration was 1 × 10?2 mol/L. In the second part, modified (OMMT) and unmodified (MMT) montmorillonite were used to obtain PP nanocomposites (OMMT/PP and MMT/PP, respectively). The nanocomposites were prepared by melt intercalation where the montmorillonite contents were 1 or 5% (w/w) for each case. The thermal analyses showed that the thermal properties of OMMT/PP nanocomposites were better than MMT/PP, and both of them were also better than pure polymer. Increase in the concentration of MMT (or OMMT) decreased the thermal resistance. Based on the IR absorption intensity changes of regularity and conformational bands, it is found that the content of the helical structure of macromolecular chains has increased with increasing concentrations of both MMT and OMMT in the nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic montmorillonite (OMMT) were prepared by melt compounding. The sodium montmorillonite (Na‐MMT) was modified using three different types of alkyl ammonium salts, namely dodecylamine, 12‐aminolauric acid, and stearylamine. The effect of clay modification on the morphological and mechanical properties of PA6/PP nanocomposites was investigated using x‐ray diffraction (XRD), transmission electron microscopy (TEM), tensile, flexural, and impact tests. The thermal properties of PA6/PP nanocomposites were characterized using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and heat distortion temperature (HDT). XRD and TEM results indicated the formation of exfoliated structure for the PA6/PP nanocomposites prepared using stearylamine modified montmorillonite. On the other hand, a mixture of intercalated and exfoliated structures was found for the PA6/PP nanocomposites prepared using 12‐aminolauric acid and dodecylamine modified montmorillonite. Incorporation of OMMT increased the stiffness but decreased the ductility and toughness of PA6/PP blend. The PA6/PP nanocomposite containing stearylamine modified montmorillonite showed the highest tensile, flexural, and thermal properties among all nanocomposites. This could be attributed to better exfoliated structure in the PA6/PP nanocomposite containing stearylamine modified montmorillonite. The storage modulus and HDT of PA6/PP blend were increased significantly with the incorporation of both Na‐MMT and OMMT. The highest value in both storage modulus and HDT was found in the PA6/PP nanocomposite containing stearylamine modified montmorillonite due to its better exfoliated structure. POLYM. COMPOS., 31:1156–1167, 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
In this work, cetyltrimethyl ammonium bromide and methacryloyloxyethyhrimethyl ammonium chloride were used to prepare organophilic montmorillonite (O‐MMT). Then, polypropylene (PP)–clay nanocomposites were prepared by the in situ grafting polymerization of styrene (St)‐containing O‐MMT onto PP with tert‐butyl perbenzoate as an initiator in the solid state. Fourier transform infrared spectroscopy, gel permeation chromatography, transmission electron microscopy, and X‐ray diffraction were applied to study the structure of the layered silicate and modified PP. The surfaces of the composites and, thus, the distribution of the clay in the PP matrix were characterized by scanning electron microscopy. The rheology and mechanical properties were studied and are discussed. According to the characterization results, OMMT and St were already grafted onto the PP main chain. Also, the intercalated structure of montmorillonite could be stabilized, and a stable exfoliated structure could be attained. Namely, intercalated PP/OMMT nanocomposites were obtained. The rheological results clearly show that these PP/OMMT nanocomposites had long‐chain‐branched structures. The peroxide modification of PP had minor effects on the tensile and bending strengths of the modified PP; however, this modification resulted in a significant reduction in the impact strength. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
The aim of the work is to extract, purify, and organically modify montmorillonite (MMT) of Lahad Datu, Sabah bentonite. The octadecylamine treated Sabah MMT (S‐OMMT) (2–8 wt%) was then melt blended with polypropylene (PP) and maleated polypropylene (PPgMAH) (10 wt%) via single screw nanomixer extruder followed by injection molding into test samples to examine the mechanical, thermal, and morphological properties of PP/S‐OMMT nanocomposites. Unmodified Sabah MMT (S‐MMT) and commercial grade MMT (Nanomer 1.30P) filled PP nanocomposites were also characterized for comparison purpose. X‐ray diffraction results showed that the interlayer spacing of S‐MMT increased after organic modification as Fourier transform infra‐red and elemental analysis evidenced the presence of octadecylamine. PP/S‐OMMT nanocomposites showed a better dispersion and strength compared to PP/Nanomer 1.30P nanocomposites due to its smaller MMT platelet size. differential scanning calorimetry and Thermogravimetry analysis revealed that the thermal stability and crystallinity of neat PP improved with the addition of all types of MMT. Dynamic mechanical analyzer showed that PP nanocomposites have higher storage modulus (E′) values than the neat PP over the whole temperature range. The new PP/S‐OMMT nanocomposites showed a comparable performance with PP/Nanomer 1.30P nanocomposites exhibiting promising future applications of S‐MMT in polymer/MMT nanocomposites. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

5.
Poly(methylmethacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by in situ suspension polymerization. MMT was previously organically modified by different modification agents [dioctadecyl dimethyl ammonium chloride (DODAC) and methacrylatoethyltrimethyl ammonium chloride (MTC)] and different modification method (cation‐exchange reaction and grafting reaction), ultimately giving rise to five kinds of organomodified MMT (OMMT). The structure of the OMMT was studied by Wide angle X‐ray diffraction (WAXD) and Fourier transform infrared spectroscopy (FTIR). Meanwhile, the structure of the PMMA/MMT nanocomposites microspheres was also investigated by WAXD. The molecular weight of the polymers extracted from PMMA/MMT nanocomposites was measured by gel permeation chromatograph (GPC). Finally, the mechanical properties of these PMMA/MMT nanocomposites were studied in detail. It was found that large interlayer spacing (d001) of OMMT could not entirely ensure an exfoliated structure of resultant PMMA/MMT nanocomposites, while OMMT with relative small d001 could still yield exfoliated structure as long as the compatibility between OMMT and polymer matrix was favorable. In addition, the results of mechanical investigation indicated that the compatibility between OMMT and PMMA matrix turned out to be the dominant factor deciding the final mechanical properties of PMMA/MMT nanocomposites. POLYM. COMPOS., 37:1705–1714, 2016. © 2014 Society of Plastics Engineers  相似文献   

6.
聚丙烯/蒙脱土纳米复合材料的制备与性能研究   总被引:5,自引:0,他引:5  
采用十八烷基三甲基氯化铵(OTAC)和十二烷基二甲基卞基氯化铵(DDBAC)改性蒙脱土,以聚丙烯接枝马来酸酐(PP-g-MAH)作相容剂,通过熔融插层法制备了聚丙烯/蒙脱土纳米复合材料(PP/OMMT).结果表明,PP-g-MAH能有效地改善PP与OMMT的相容性,当OTAC改性的蒙脱土(OMMT-O)用量为5wt%、PP-g-MAH用量为10wt%时,PP/PP-g-MAH/OMMT-O纳米复合材料的冲击强度为5.4 KJ/m^2,比纯PP提高了80%,极限氧指数(LOI)由PP的18提高到23.X射线衍射(XRD)测试表明,PP已经插层进入到蒙脱土片层中,部分蒙脱土产生了剥离.  相似文献   

7.
The water absorption behavior of different types of organophilic montmorillonite (OMMT)‐filled polyamide 6/polypropylene nanocomposites with and without compatibilizers (maleated PP or PP‐g‐MA and maleated styrene‐ethylene/butylene‐styrene or SEBS‐g‐MA) was evaluated. Four different types of OMMT, i.e., dodecylamine‐modified MMT (D‐MMT), 12 aminolauric acid‐modified MMT (A‐MMT), stearylamine‐modified MMT (S‐MMT), and commercial organo‐MMT (C‐MMT) were used as reinforcement. The water absorption response of the nanocomposites was studied and analyzed by tensile test and morphology assessment by scanning electron microscopy (SEM). The kinetics of water absorption of the nanocomposites conforms to Fick's law. The Mm and D are dependent on the types of OMMT and compatibilizers. The equilibrium water content and diffusivity of PA6/PP blend were increased by the addition of OMMT but decreased in the presence of compatibilizers. On water absorption, both strength and stiffness of the nanocomposites were drastically decreased, but the ductility was remarkably increased. Both PP‐g‐MA and SEBS‐g‐MA played an effective role as compatibilizers for the nanocomposites. This was manifested by their higher retention ability in strength and stiffness (in the wet and re‐dried states), reduced the equilibrium water content, and diffusivity of the nanocomposites. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

8.
The degradation and flame retardancy of polypropylene/organically modified montmorillonite (PP/OMMT) nanocomposite were studied by means of gas chromatography‐mass spectrometry and cone calorimeter. The catalysis of hydrogen proton containing montmorillonite (H‐MMT) derived from thermal decomposition of (alkyl) ammonium in the OMMT on degradation of PP strongly influence carbonization behavior of PP and then flame retardancy. Brønsted acid sites on the H‐MMT could catalyze degradation reaction of PP via cationic mechanism, which leads to the formation of char during combustion of PP via hydride transfer reaction. A continuous carbonaceous MMT‐rich char on the surface of the burned residues, which work as a protective barrier to heat and mass transfer, results from the homogeneous dispersion of OMMT in the PP matrix and appropriate char produced. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
The effects of poly(ethylene glycol) (PEG)/montmorillonite (MMT) hybrids on the phase morphology, rheological behaviors and mechanical properties of polypropylene (PP) were investigated. The analysis of transmission electron microscopy (TEM) and wide-angle X-ray diffraction (WAXD) indicated that the PEG modified montmorillonite was intercalated and well dispersed into PP matrix. It was found that the addition of the PEG/MMT hybrids in PP matrix lead to a significant reduction of melt viscosity and enhancement in izod-notched impact strength and elongation at break, except that the tensile strength was without much obvious change. A quantitative analysis indicated that MMT was intercalated by PEG, which was responsible for the melt viscosity reduction of PP matrix. Differential scanning calorimetry (DSC) analysis indicated that the addition of PEG/MMT hybrids induced the formation of β-crystal of PP. Polarized light micrographs (PLM) analysis indicated that the dispersed MMT, which acted as a nucleating agent, lowered the spherulite dimension and increased the spherulite number, resulting in high izod-notched impact strength and elongation at break.  相似文献   

10.
Ethylene–propylene–diene rubber (EPDM)/montmorillonite (MMT) composites were prepared through a melt process, and three kinds of surfactants with different ammonium cations were used to modify MMT and affect the morphology of the composites. The morphology of the composites depended on the alkyl ammonium salt length, that is, the hydrophobicity of the organic surfactants. Organophilic montmorillonite (OMMT), modified by octadecyltrimethyl ammonium salt and distearyldimethyl ammonium salt, was intercalated and partially exfoliated in the EPDM matrix, whereas OMMT modified by hexadecyltrimethyl ammonium chloride exhibited a morphology in which OMMT existed as a common filler. Ethylene–propylene–diene rubber grafted with maleic anhydride (MAH‐g‐EPDM) was used as a compatibilizer and greatly affected the dispersion of OMMT. When OMMTs were modified by octadecyltrimethyl ammonium chloride and distearydimethyl ammonium chloride, the EPDM/OMMT/MAH‐g‐EPDM composites (100/15/5) had an exfoliated structure, and they showed good mechanical properties and high dynamic moduli. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 638–646, 2004  相似文献   

11.
Two types of modified montmorillonite (MMT) were achieved using octadecylamine as the modifying agent by the methods of dry process and wet route. Polypropylene (PP)/MMT nanocomposites were prepared using the melt mixing technique and employing maleic anhydride‐grafted polypropylene (PP‐MA) as the compatibilizer. The modification of montmorillonite was characterized by fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and scanning electron microscope (SEM). The effect of MMT modification and PP‐MA on the microstructure and properties of PP/MMT nanocomposites was investigated by SEM, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and polarizing microscopy. The results show that organic montmorillonite modified by wet process (WOMMT) has a large d‐spacing increment; whereas montmorillonite modified by dry process (DOMMT) shows little d‐spacing increment. Furthermore, the mechanical properties of composites incorporating WOMMT are better than that containing DOMMT. As a third component, the addition of PP‐MA benefits the formation of exfoliated structure and the dispersion of MMT in PP matrix, and hence, enhances the physical properties of the nanocomposite. With the presence of PP‐MA, the highly dispersed MMT increases the number of spherulite crystals, enhances the melting enthalpy, improves the thermal stability, and induces the desired tiny crazes more effectively. MMT increases the storage modulus (E′) and glass‐transition temperature (Tg) of PP because of the stiffness of MMT layers, but PP‐MA decreases them owing to its high melt flow index, both of which were in favor of improving the physical properties. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3952–3960, 2013  相似文献   

12.
Polypropylene/organic‐montmorillonite (PP/OMMT) nanocomposites were prepared via a solid‐phase PP graft (TMPP) with a higher grafting level as the compatibilizer. The effects of the compatibilizer on the structure and properties of PP/OMMT nanocomposites were investigated. The structure of the nanocomposites were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that when the weight ratio of TMPP and OMMT is greater than 1:1, the OMMT can be dispersed in PP matrix uniformly at the nanoscale. The mechanical properties of the nanocomposites reached a maximum when the weight ratio of TMPP and OMMT is 1:1, although more uniform dispersion was achieved at a higher content of TMPP. The mechanical properties of the nanocomposites decrease with the content of TMPP. The crystallization behavior, dynamic rheological property, and thermal stability of the nanocomposites were investigated by differential scanning calorimetry (DSC), dynamic rheological analysis, and thermal gravimetric analysis (TGA), respectively. Due to the synergistic effects of TMPP and OMMT on the crystallization of PP, the crystallization peak temperature of the nanocomposites increased remarkably compared with that of the neat PP. TMPP shows β‐phase nucleating ability and OMMT promotes the development of β‐phase crystallite. The nanocomposites show restricted melt flow and enhanced temperature sensitivity compared with the neat PP. The thermal stability of the nanocomposites is obviously improved compared with that of the neat PP. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers.  相似文献   

13.
Double‐modified montmorillonite (MMT) was first prepared by covalent modification of MMT with 3‐aminopropyltriethoxysilane and then intercalation modification by tributyl tetradecyl phosphonium ions. The obtained double‐modified MMT was melt compounded with polypropylene (PP) to obtain nanocomposites. The dispersion of the double‐modified MMT in PP was found to be greatly improved by the addition of PP‐graft‐maleic anhydride (PP‐g‐MA) as a “compatibilizer,” whose anhydride groups can react with the amino groups on the surface of the double‐modified MMT platelets and thus improve the dispersion of MMT in PP. Fourier transform infrared, X‐ray diffraction, transmission electron microscopy, thermogravimetric analysis, scanning electron microscopy, and tensile test were used to characterize the structure of the double‐modified MMT, morphology, and the thermal and mechanical properties of the nanocomposites. The results show that PP‐g‐MA promotes the formation of exfoliated/intercalated morphology and obviously increases the thermal properties, tensile strength, and Young's modulus of the PP/double‐modified MMT nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
采用十六烷基三甲基溴化铵(CTAB) 、环氧树脂(EP)、异佛尔酮二异氰酸酯(IPDI)、十八胺(ODA)对钠基蒙脱土(MMT)进行干法插层改性, 分别制备了CMMT、EMMT、IMMT和OMMT等新型有机蒙脱土,并对聚丙烯(PP)进行熔融改性制得PP/OMMT纳米复合材料。通过傅里叶变换红外光谱仪、X射线衍射仪 、透射电子显微镜、差示扫描量热仪等分析手段对新型有机蒙脱土及纳米复合材料的结构形态及性能进行了研究。结果表明,OMMT层间距由蒙脱土的1.5626 nm扩大到4.2828 nm, OMMT片层均匀分散在PP基体中;当OMMT含量为5 %(质量分数,下同)时,纳米复合材料拉伸强度、断裂伸长率及冲击强度分别比纯PP提高了25.9 %、17.1 %和127.1 %;同时,加入OMMT后,PP的结晶度先升高后降低。  相似文献   

15.
The linear and nonlinear shear rheological behaviors of poly(propylene) (PP)/clay (organophilic‐montmorillonite) nanocomposites (PP/org‐MMT) were investigated by an ARES rheometer. The materials were prepared by melt intercalation with maleic anhydride functionalized PP as a compatibilizer. The storage moduli (G′), loss moduli (G″), and dynamic viscosities of polymer/clay nanocomposites (PPCNs) increase monotonically with org‐MMT content. The presence of org‐MMT leads to pseudo‐solid‐like behaviors and slower relaxation behaviors of PPCN melts. For all samples, the dependence of G′ and G″ on ω shows nonterminal behaviors. At lower frequency, the steady shear viscosities of PPCNs increase with org‐MMT content. However, the PPCN melts show a greater shear thinning tendency than pure PP melt because of the preferential orientation of the MMT layers. Therefore, PPCNs have higher moduli but better processibility compared with pure PP.© 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2427–2434,2004  相似文献   

16.
The polymer nanocomposite (PNC) films consisted of poly(ethylene oxide) (PEO) and sodium cations montmorillonite (MMT) clay were prepared by aqueous solution casting and direct melt press compounding techniques, whereas the films of PEO with trimethyl octadecyl ammonium cations organo‐modified montmorillonite (OMMT) clay were formed by melt pressed technique. The clay concentrations in the nanocomposites used are 1, 2, 3, 5, 10, and 20 wt % of the PEO weight. The X‐ray diffraction patterns of these nanocomposites were measured in the angular range (2θ) of 3.8–30°. The values of basal spacing d001 of MMT/OMMT, clay gallery width Wcg, d‐spacings of PEO crystal reflections d120 and d112, and their corresponding crystallite size L, and the peaks intensity I (counts) were determined for these nanocomposites. Results reveal that the nanocomposites have intercalated clay structures and the amount of intercalation increases with the increase of clay concentration. As compared to melt pressed PEO–MMT nanocomposites, the amount of clay intercalation is higher in aqueous solution cast nanocomposites. At 20 wt % MMT dispersion in PEO matrix, the solution cast PEO–MMT nanocomposite almost changes into amorphous phase. The melt press compounded PEO–OMMT films show more intercalation as compared to the PEO–MMT nanocomposites prepared by same technique. In melt pressed nanocomposites, the PEO crystalline phase significantly reduces when clay concentration exceeds 3 wt %, which is evidenced by the decrease in relative intensity of PEO principal crystalline peaks. The effect of interactions between the functional group (ethylene oxide) of PEO and layered sheets of clay on both the main crystalline peaks of PEO was separately analyzed using their XRD parameters in relation to structural conformations of these nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39898.  相似文献   

17.
Hybrid latices of poly(styrene‐co‐butyl acrylate) were synthesized via in situ miniemulsion polymerization in the presence of 3 and 6 wt % organically modified montmorillonite (OMMT). Three different ammonium salts: cetyl trimethyl ammonium chloride (CTAC), alkyl dimethyl benzyl ammonium chloride (Dodigen), and distearyl dimethyl ammonium chloride (Praepagen), were investigated as organic modifiers. Increased affinity for organic liquids was observed after organic modification of the MMT. Stable hybrid latices were obtained even though miniemulsion stability was disturbed to some extent by the presence of the OMMTs during the synthesis. Highly intercalated and exfoliated polymer‐MMT nanocomposites films were produced with good MMT dispersion throughout the polymeric matrix. Materials containing MMT modified with the 16 carbons alkyl chain salt (CTAC) resulted in the largest increments of storage modulus, indicating that single chain quaternary salts provide higher increments on mechanical properties. Films presenting exfoliated structure resulted in the largest increments in the onset temperature of decomposition. For the range of OMMT loading studied, the nanocomposite structure influenced more significantly the thermal stability properties of the hybrid material than did the OMMT loading. The film containing 3 wt % MMT modified with the two 18 carbons alkyl chains salt (Praepagen) provided the highest increment of onset temperature of decomposition. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Polypropylene (PP) and polypropylene/polypropylene‐g‐maleic anhydride/ organomontmorillonite (PP/PP‐g‐MA/OMMT) nanocomposites were modified with 0.05 to 0.3% (w/w) of the aryl amide β‐nucleator to promote the formation of hexagonal crystal modification (β‐phase) during melt crystallization. The nonisothermal crystallization behavior of PP, PP/PP‐g‐MA/OMMT and β‐nucleated PP/PP‐g‐MA/OMMT nanocomposites were studied by means of differential scanning calorimetry. Structure‐property relationships of the PP nanocomposites prepared by melt compounding were mainly focused on the effect and quantity of the aryl amide nucleator. The morphological observations, obtained from scanning electron microscopy, transmission electron microscopy and X‐ray diffraction analyses are presented in conjunction with the thermal, rheological, and mechanical properties of these nanocomposites. Chemical interactions in the nanocomposites were observed by FT‐IR. It was found that the β‐crystal modification affected the thermal and mechanical properties of PP and PP/PP‐g‐MA/OMMT nanocomposites, while the PP/PP‐g‐MA/OMMT nanocomposites of the study gained both a higher impact strength (50%) and flexural modulus (30%) compared to that of the neat PP. β‐nucleation of the PP/PP‐g‐MA/OMMT nanocomposites provided a slight reduction in density and some 207% improvement in the very low tensile elongation at break at 92% beta nucleation. The crystallization peak temperature (Tcp) of the PP/PP‐g‐MA/OMMT nanocomposite was slightly higher (116°C) than the neat PP (113°C), whereas the β‐nucleation increased the crystallization temperature of the PP/PP‐g‐MA/OMMT/aryl amide to 128°C, which is of great advantage in a commercial‐scale mold processing of the nanocomposites with the resulting lower cycle times. The beta nucleation of PP nanocomposites can thus be optimized to obtain a better balance between thermal and mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

19.
In this paper, polypropylene (PP)/organophilic montmorillonite (OMMT) nanocomposites were successfully prepared without any compatibilizers by solid‐state shear compounding (S3C) using pan‐mill equipment. X‐ray diffraction (XRD) patterns show that the OMMT characteristic (001) peak at 2θ equal to 4.59 degrees disappeared for the milled OMMT and corresponding composites. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) photographs show that the thickness of pan‐milled OMMT decreased from ca 100–200 nm to ca 30–50 nm, and OMMT was partly exfoliated in the PP matrix because the pan‐type mill can exert fairly strong squeezing force in the normal direction and shearing force in both radial and tangential directions on milled materials. PP/OMMT nanocomposites at low OMMT loading have higher melting point, crystallization temperature, thermal degradation temperature and heat distortion temperature than those of neat PP. Moreover, addition of OMMT accelerates crystallization of PP significantly. S3C is a novel approach to prepare polymer/layered silicate nanocomposites with high performances at low filler loading. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
Acrylonitrile–butadiene–styrene (ABS)–clay composite and intercalated nanocomposites were prepared by melt processing, using Na‐montmorillonite (MMT), several chemically different organically modified MMT (OMMT) and Na‐laponite clays. The polymer–clay hybrids were characterized by WAXD, TEM, DSC, TGA, tensile, and impact tests. Intercalated nanocomposites are formed with organoclays, a composite is obtained with unmodified MMT, and the nanocomposite based on synthetic laponite is almost exfoliated. An unintercalated nanocomposite is formed by one of the organically modified clays, with similar overall stack dispersion as compared to the intercalated nanocomposites. Tg of ABS is unaffected by incorporation of the silicate filler in its matrix upto 4 wt % loading for different aspect ratios and organic modifications. A significant improvement in the onset of thermal decomposition (40–44°C at 4 wt % organoclay) is seen. The Young's modulus shows improvement, the elongation‐at‐break shows reduction, and the tensile strength shows improvement. Notched and unnotched impact strength of the intercalated MMT nanocomposites is lower as compared to that of ABS matrix. However, laponite and overexchanged organomontmorillonite clay lead to improvement in ductility. For the MMT clays, the Young's modulus (E) correlates with the intercalation change in organoclay interlayer separation (Δd001) as influenced by the chemistry of the modifier. Although ABS‐laponite composites are exfoliated, the intercalated OMMT‐based nanocomposites show greater improvement in modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号