首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this study, a novel environment-friendly PBST/PPC-based blown film was prepared using maleic anhydride (MA) as a reactive compatibilizer to enhance the compatibility between poly(butylene succinate-co-terephthalate) (PBST) and poly(propylene carbonate) (PPC). Results of rheological testing and gel permeation chromatography (GPC) indicated that MA reacted with PBST/PPC during melt-blending extrusion. Morphological analysis of the cryo-fractured surfaces of PBST/PPC blend showed significantly improved compatibility between PBST and PPC with the addition of MA. Moreover, the Young's modulus, tensile strength, breaking strain, and tear strength of PBST/PPC/MA blown films increased with an increase in MA content. In comparison to PBST/MA blown film without PPC, the barrier property of PBST/PPC/MA blown films was improved. In addition, in vitro cell experiments showed that the PBST/PPC/MA blown film was suitable for the growth of mouse fibroblast (L929) cells. In vitro ecotoxicity testing on mung bean plant showed that the extracts from the PBST/PPC/MA blown film had no negative effects on the development of mung bean plant. Furthermore, degradability testing in soil also proved that the PBST/PPC/MA blown film had good biodegradability. Thus, the PBST/PPC/MA blown film can be used in fields, such as food packaging and agricultural mulch film.  相似文献   

2.
Zhaobin Qiu  Wantai Yang 《Polymer》2006,47(18):6429-6437
Biodegradable crystalline poly(butylene succinate) (PBSU) can form miscible polymer blends with amorphous poly(vinyl phenol) (PVPh). The isothermal crystallization kinetics and morphology of neat and blended PBSU with PVPh were studied by differential scanning calorimetry (DSC), optical microscopy (OM), wide angle X-ray diffraction (WAXD), and small angle X-ray scattering (SAXS) in this work. The overall isothermal crystallization kinetics of neat and blended PBSU was studied with DSC in the crystallization temperature range of 80-88 °C and analyzed by applying the Avrami equation. It was found that blending with PVPh did not change the crystallization mechanism of PBSU, but reduced the crystallization rate compared with that of neat PBSU at the same crystallization temperature. The crystallization rate decreased with increasing crystallization temperature, while the crystallization mechanism did not change for both neat and blended PBSU irrespective of the crystallization temperature. The spherulitic morphology and growth were observed with hot stage OM in a wide crystallization temperature range of 75-100 °C. The spherulitic morphology of PBSU was influenced apparently by the crystallization temperature and the addition of PVPh. The linear spherulitic growth rate was measured and analyzed by the secondary nucleation theory. Through the Lauritzen-Hoffman equation, some parameters of neat and blended PBSU were derived and compared with each other including the nucleation parameter (Kg), the lateral surface free energy (σ), the end-surface free energy (σe), and the work of chain folding (q). Blending with PVPh decreased all the aforementioned parameters compared with those of neat PBSU; however, the decrease extent was limited. WAXD result showed that the crystal structure of PBSU was not modified after blending with PVPh. SAXS result showed that the long period of blended PBSU increased, possibly indicating that the amorphous PVPh might reside mainly in the interlamellar region of PBSU.  相似文献   

3.
BACKGROUND: To obtain a biodegradable thermoplastic elastomer, a series of poly(ester‐ether)s based on poly(butylene succinate) (PBS) and poly(propylene glycol) (PPG), with various mass fractions and molecular weights of PPG, were synthesized through melt polycondensation. RESULTS: The copolyesters were characterized using 1H NMR, gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, mechanical testing and enzymatic degradation. The results indicated that poly(ester‐ether)s with high molecular weights were successfully synthesized. The composition of the copolyesters agreed very well with the feed ratio. With increasing content of the soft PPG segment, the glass transition temperature decreased gradually while the melting temperature, the crystallization temperature and the relative degree of crystallinity decreased. Mechanical testing demonstrated that the toughness of PBS was improved significantly. The elongation at break of the copolyesters was 2–5 times that of the original PBS. Most of the poly(ester‐ether) specimens were so flexible that they were not broken in Izod impact experiments. At the same time, the enzymatic degradation rate of PBS was enhanced. Also, the difference in molecular weight of PPG led to properties being changed to some extent among the copolyesters. CONCLUSION: The synthesized poly(ester‐ether)s having excellent flexibility and biodegradability extend the application of PBS into the areas where biodegradable thermoplastic elastomers are needed. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
In this article, isothermal crystallization, melting behaviors, and spherulitic morphologies of high‐impact multiblock copolymers, comprising of PBS as hard segment and poly(1,2‐propylene succinate) (PPSu) as soft segment with hexamethylene diisocyanate as a chain extender, were investigated. The results from differential scanning calorimetry (DSC) suggest that the two segments of multiblock copolymers are miscible in amorphous region. The crystallization kinetics were analyzed by the Avrami equation. The effect of PBS segment length as well as the introduction of PPSu segment on the crystallization kinetics and melting bebaviors of block copolymers was studied. Both crystallization rate (G) and spherulitic growth rate (g) are markedly increased with the increase of PBS segment length or decreased with the incorporation of PPSu segment. All the multiblock copolymers show the multiple melting behaviors, whose position and area depend on PBS segment length and the presence of PPSu segment. The melting peaks shift to higher temperature region with increasing PBS segment length. Spherulitic morphologies of the multiblock copolymers after being isothermally crystallized were examined by polarized optical microscopy. It is the first time to investigate the effect of one segment length on crystallization bebavior of block copolymers based on a fixed weight ratio systematically. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
N-hexenyl side branches were introduced into poly(butylene succinate) (PBS) by polymerization of succinic acid (SA) with 1,4-butanediol (BD) in the presence of 7-octene-1,2-diol (OD). Thermal properties and biodegradability of the aliphatic polyesters were investigated before and after epoxidation of the pendant double bonds. The glass-transition temperature (Tg) decreased with the branching density to give a minimum at 0.03 mol of branching units per mole of structural units. Thereafter, Tg increased due to the in situ crosslinking of the unsaturated groups during the differential scanning calorimetry (DSC) measurements. N-Hexenyl side branches decreased melting temperature (Tm) more significantly than ethyl side branches, but the effect was on par with that by n-octyl branches. Epoxidation of the double bonds decreased Tm and melting enthalpy (ΔHm), but increased Tg of the aliphatic polyester. Biodegradability was enhanced to some extent by the presence of n-hexenyl side branches. However, the epoxidation of the unsaturated groups did not notably affect the biodegradability. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2219–2226, 2001  相似文献   

6.
Horng-Jer Tai 《Polymer》2007,48(15):4558-4566
Dielectric properties of poly(butylene succinate) crystallized under different conditions have been reported in the temperature range of 163-383 K and in the frequency range of 0.01-105 Hz. Both the dipolar α and β processes have been identified at low temperatures: the α process is associated with the amorphous fraction while the β with the relaxations in both the amorphous and crystalline fractions. The space charge effect dominates the high temperature dielectric spectra. These spectra have been analyzed in the light of an equivalent circuit model. The Maxwell-Wagner-Sillars polarization, electrode polarization and free charge motion are well resolved. At 383 K, near the melting temperature (387 K), massive melting and subsequent recrystallization have been observed. The peculiar evolution of the spectra is also analyzed using the same equivalent circuit model. The relationship between the fitting parameters and the evolved microstructures is discussed.  相似文献   

7.
In this exploration of novel biodegradable polyesters, multiblock copolymers based on poly(butylene succinate) (PBS) and poly(1,2‐propylene terephthalate) (PPT) were successfully synthesized with hexamethylene diisocyanate as a chain extender. The amorphous and rigid PPT segment was chosen to modify PBS. The structures of the polymers were characterized using 1H NMR and 13C NMR spectroscopy, gel permeation chromatography and wide‐angle X‐ray diffraction; the physical properties were investigated using thermogravimetric analysis, differential scanning calorimetry, mechanical testing and enzymatic degradation. The results indicate that the copolymers possess satisfactory mechanical and thermal properties, with impact strength 186% higher than that of PBS homopolymer, while tensile strength, flexural strength, thermal stability and melting point (Tm) are slightly decreased. Crystallization and biodegradation rates are still acceptable at 5 wt% PPT, although they are decreased by the introduction of PPT. The addition of appropriate amounts of PPT can improve the impact strength effectively without an obviously deleterious effect on tensile strength, flexural strength, thermal stability, Tm, crystallization rate and biodegradability. This study describes a convenient route to novel multiblock copolymers comprising crystallizable aliphatic and amorphous aromatic polyesters, which are promising for commercialization as biodegradable materials. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
Biodegradable polymeric composites were fabricated from poly(butylene succinate) (PBS) and kenaf fiber (KF) by melt mixing technique. The mechanical and dynamic mechanical properties, morphology and crystallization behavior were investigated for PBS/KF composites with different KF contents (0, 10, 20, and 30 wt %). The tensile modulus, storage modulus and the crystallization rate of PBS in the composites were all efficiently enhanced. With the incorporation of 30% KF, the tensile modulus and storage modulus (at 40°C) of the PBS/KF composite were increased by 53 and 154%, respectively, the crystallization temperature in cooling process at 10°C/min from the melt was increased from 76.3 to 87.7°C, and the half‐time of PBS/KF composite in isothermal crystallization at 96 and 100°C were reduced to 10.8% and 14.3% of that of the neat PBS, respectively. SEM analysis indicates that the adhesion between PBS and KF needs further improvement. These results signify that KF is efficient in improving the tensile modulus, storage modulus and the crystallization rate of PBS. Hence, this study provides a good option for preparing economical biodegradable composite. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
The effects of corn starch (CS) filler and lysine diisocyanate (LDI) as a coupling agent on the crystallization behavior of a poly(butylene succinate) (PBS)/CS ecocomposite were investigated using differential scanning calorimetry. In isothermal crystallization, n values for pure PBS were from 2.33 to 2.82. On the other hand, both composites showed values of 3 < n < 4. In nonisothermal crystallization, the Avrami exponent varied from 2.12 to 2.55 for pure PBS, from 1.58 to 1.96 for the composite without LDI, and from 1.79 to 1.91 for the composite with LDI, depending on the cooling rate. There was not a large difference of the crystallization rate constant (k) as adjusted by the Jeziornay suggestion. The activation energy for nonisothermal crystallization was also calculated on the basis of three different equations (Augis–Bennett, Kissinger, and Takhor equations). However, the values of the activation energy were in contradiction with the results of the kinetics. The addition of the filler (CS) and coupling agent (LDI) affected the morphological structure of PBS spherulites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1107–1114, 2005  相似文献   

10.
Miscibility and crystallization behavior have been investigated in blends of poly(butylene succinate) (PBSU) and poly(ethylene oxide) (PEO), both semicrystalline polymers, by differential scanning calorimetry and optical microscopy. Experimental results indicate that PBSU is miscible with PEO as shown by the existence of single composition dependent glass transition temperature over the entire composition range. In addition, the polymer-polymer interaction parameter, obtained from the melting depression of the high-Tm component PBSU using the Flory-Huggins equation, is composition dependent, and its value is always negative. This indicates that PBSU/PEO blends are thermodynamically miscible in the melt. The morphological study of the isothermal crystallization at 95 °C (where only PBSU crystallized) showed the similar crystallization behavior as in amorphous/crystalline blends. Much more attention has been paid to the crystallization and morphology of the low-Tm component PEO, which was studied through both one-step and two-step crystallization. It was found that the crystallization of PEO was affected clearly by the presence of the crystals of PBSU formed through different crystallization processes. The two components crystallized sequentially not simultaneously when the blends were quenched from the melt directly to 50 °C (one-step crystallization), and the PEO spherulites crystallized within the matrix of the crystals of the preexisted PBSU phase. Crystallization at 95 °C followed by quenching to 50 °C (two-step crystallization) also showed the similar crystallization behavior as in one-step crystallization. However, the radial growth rate of the PEO spherulites was reduced significantly in two-step crystallization than in one-step crystallization.  相似文献   

11.
The article presents results of studies on composites made from poly(propylene) (PP) modified with poly(aniline) (PANI) doped with dodecylbenzene sulfonic acid (DBSA) and chlorinated poly(propylene) (CPP). The volume resistivity of PP/CPP/PANI composites was detected, and the results show that the volume resistivity decreases with increasing CPP content, and there exists a minimum volume resistivity. Effects of CPP on the microstructure and crystalline structure of the PP/CPP/PANI composites and the relationship between the effects and the electric property were carefully analyzed by scanning electron microscope (SEM) and wide angle X‐ray diffraction (WAXD). The method that the specimens of SEM are polished is appropriate to investigate the morphology of conducting polymer composites. The obtained results illuminate that the area of conducting parts and insulating parts obtained from the digital analysis of the SEM image is obviously influenced by the CPP content, the parameters of the lamellar‐like structure are immediately related to CPP content and denote the dispersion of PANI‐DBSA, and the percent crystallinity and mean crystal size of PP are directly correlated with the CPP content. The increasing area of conducting parts, the increasement of layer distance, the decreasement of size and layer number of the lamellar‐like structure of PANI‐DBSA, and the increasement of the percent crystallinity and mean crystal size of PP are beneficial to the improvement of the conductive property of PP/CPP/PANI composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Polymer blends can improve material processability and can be used to extrude partially degraded materials, such as expired poly (butylene adipate-co-terephthalate) (PBAT), which cannot be normally extruded. Therefore, in this study, the extrudability of PBAT that has passed its expiration date was restored by blending it with poly (butylene succinate) (PBS). Various polymer blends were extruded and characterized to achieve high-efficiency extrusion. The carbonyl indices in partially degraded PBAT and the corresponding control sample detailed the effects of 98 months of aging on molecular properties. The semicrystalline structure consisted of a mixed ordered arrangement of PBS and PBAT chains dispersed in an amorphous matrix. The microscopic images of the surfaces of the polymer films revealed defects and roughness, followed by an increase in the PBAT concentration in blends. Changes in mechanical properties and water vapor permeability correlated with the PBAT concentration in the blends. To avoid polymer loss, we reported a simple method for using PBAT that has passed its expiration date and cannot be extruded. The results revealed that the polymer films could be used in the packaging industry, especially in food and agricultural sectors.  相似文献   

13.
Poly(butylene succinate) (PBS)/clay nanocomposites were prepared by condensation polymerization of 1,4‐butanediol and succinic acid in the presence of an organoclay containing epoxy groups (TFC) and titanium(IV) butoxide as a catalyst. The intercalation and exfoliation of the clay layers in the resulting composite were examined using X‐ray scattering and transmission electron microscopy. The role of the epoxy groups of TFC was investigated for the improvement of the morphology of the composites. The silicate layers in the composite were exfoliated to a greater extent as the epoxy content of TFC was increased from 0.245 to 0.359 mmol g?1, while only intercalated morphology was obtained when no epoxy was present. The improved morphologies were attributed to the enhanced interfacial interactions between PBS and TFC through a chemical reaction of the epoxy groups with the end groups of the PBS. The nonisothermal crystallization process of the composites as well as that of neat PBS is well represented by the Avrami equation as modified by Jeziorny [Jeziorny A, Polymer 19 :1142 (1978)]. The crystallization of the composite took place faster as the epoxy content of the clay increased, due to the more effective nucleation of the well‐dispersed TFC layers. Copyright © 2007 Society of Chemical Industry  相似文献   

14.
Biodegradable polyesters such as poly(butylene succinate) (PBS), poly(propylene succinate) (PPS), and poly(butylene succinate‐co‐propylene succinate)s (PBSPSs) were synthesized respectively, from 1,4‐succinic acid with 1,4‐butanediol and 1,3‐propanediol through a two‐step process of esterification and polycondensation in this article. The composition and physical properties of both homopolyesters and copolyesters were investigated via 1H NMR, DSC, TGA, POM, AFM, and WAXD. The copolymer composition was in good agreement with that expected from the feed composition of the reactants. The melting temperature (Tm), crystallization temperature (Tc), crystallinity (X), and thermal decomposition temperature (Td) of these polyesters decreased gradually as the content of propylene succinate unit increased. PBSPS copolyesters showed the same crystal structure as the PBS homopolyester. Besides the normal extinction crosses under the polarizing optical microscope, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Poly(butylene succinate)/cellulose diacetate (PBS/CDA) blends were prepared by the solution blending method from poly(butylene succinate) (PBS) and cellulose diacetate (CDA). The influence of hydrogen bond on the structure, morphology, crystallization, as well as the physical properties of PBS/CDA blends was significantly investigated. The fourier transform infrared spectroscopy (FTIR) results indicated that the carbonyl groups of PBS shifted to higher wavenumbers and disappeared at the content of 60% CDA, due to the formation of hydrogen bond between PBS and CDA. The wide‐angle X‐ray diffractometer (WAXD) and differential scanning calorimeter (DSC) analysis suggest that the crystallization of PBS was significantly restricted by the incorporation of CDA, which is also attributed to the hydrogen bonding. The scanning electron miscroscope (SEM) and polarized optical microscopy (POM) results revealed that PBS and CDA were miscible without appearance of obvious phase separation. The hydrogen bonding interaction led to the change of decomposing mechanism of blends as determined by thermogravimetric analysis (TGA), as well as the increase of the elongation at break due to the reduced crystallinity of PBS. The existence of CDA led to the decrease of water contact angle, showing of the improved hydrophilicity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
The subsequent melting behaviour of poly(butylene succinate) (PBSU) and poly(ethylene succinate) (PES) was investigated using DSC and temperature modulated DSC (TMDSC) after they finished nonisothermal crystallization from the melt. PBSU exhibited two melting endotherms in the DSC traces upon heating to the melt, which was ascribed to the melting and recrystallization mechanism. However, one melting endotherm with one shoulder and one crystallization exotherm just prior to the melting endotherm were found for PES. The crystallization exotherm was ascribed to the recrystallization of the melt of the crystallites with low thermal stability, and the shoulder was considered to be the melting endotherm of the crystallites with high thermal stability. The final melting endotherm was ascribed to the melting of the crystallites formed through the reorganization of the crystallites with high thermal stability during the DSC heating process. TMDSC experiments gave the direct evidences to support the proposed models to explain the melting behaviour of PBSU and PES crystallized nonisothermally from the melt.  相似文献   

17.
A systematic investigation by FTIR spectroscopy was undertaken on blends of poly(propylene carbonate) (PPC) and bisphenol A (BPA). It provided direct evidence of the hydrogen bond (H‐bond) between BPA O? H groups and PPC C?O groups. Using a curve‐fitting method, qualitative as well as quantitative information concerning this H‐bond interaction was obtained. The inter‐H‐bond in PPC/BPA blends was weaker than the self‐H‐bond in BPA. The absorptivities of the free and the H‐bonded C?O groups were nearly equal. The fraction of H‐bonded C?O in the blends increased with BPA content and leveled off at a value close to 40 %. Finally, FTIR–temperature measurements of pure PPC and a representative blend were reported: by monitoring the peak areas of C?O absorptions, the dissociation of the inter‐H‐bonds and the thermal degradation of PPC were observed. It revealed that the presence of BPA clearly retarded the thermal degradation of PPC. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
To produce biodegradable poly(butylene succinate) (PBS) foam by compression molding, high viscosity PBS was prepared with dicumyl peroxide (DCP) as a crosslinking agent and trimethylolpropane trimethacrylate (TMPTMA) as a curing coagent by crosslink method. The influences of various factors on the foaming process and the properties of PBS foams were investigated. The results show that the use of DCP and TMPTMA simultaneously can effectively increase the melt viscosity of PBS. Zinc oxide/zinc stearate was used to reduce the thermal decomposition temperature of the blowing agent azodicarbonamide, which can balance well the vulcanization of PBS and the decomposition of blowing agent. Finally, closed‐cell PBS foams with degradable property have been successfully prepared by a traditional chemical compression molding foaming way. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Four blends of poly(hydroxybutyrate) (PHB) and poly(butylene succinate) (PBSU), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHB/PBSU ranging from 80/20 to 20/80 by co-dissolving the two polyesters in N,N-dimethylformamide and casting the mixture. Differential scanning calorimetry (DSC) and optical microscopy (OM) were used to probe the miscibility of PHB/PBSU blends. Experimental results indicated that PHB showed some limited miscibility with PBSU for PHB/PBSU 20/80 blend as evidenced by the small change in the glass transition temperature and the depression of the equilibrium melting point temperature of the high melting point component PHB. However, PHB showed immiscibility with PBSU for the other three blends as shown by the existence of unchanged composition independent glass transition temperature and the biphasic melt. Nonisothermal crystallization of PHB/PBSU blends was investigated by DSC using various cooling rates from 2.5 to 10 °C/min. During the nonisothermal crystallization, despite the cooling rates used two crystallization peak temperatures were found for PHB/PBSU 40/60 and 60/40 blends, corresponding to the crystallization of PHB and PBSU, respectively, whereas only one crystallization peak temperature was observed for PHB/PBSU 80/20 and 20/80 blends. However, it was found that after the nonisothermal crystallization the crystals of PHB and PBSU actually co-existed in PHB/PBSU 80/20 and 20/80 blends from the two melting endotherms observed in the subsequent DSC melting traces, corresponding to the melting of PHB and PBSU crystals, respectively. The subsequent melting behavior was also studied after the nonisothermal crystallization. In some cases, double melting behavior was found for both PHB and PBSU, which was influenced by the cooling rates used and the blend composition.  相似文献   

20.
A composite was synthesized by irradiation of poly(butylene succinate) (PBS) and glass fiber (GF) in the presence of a polyfunctional monomer, trimethallyl isocyanurate (TMAIC), which accelerates gel formation of the matrix (PBS) in the composite. The highest gel fraction was achieved at 1% concentration of TMAIC at the dose level of 200 kGy compared to other concentrations. Mechanical properties of the composites were highly dependent on the gel fraction of the polymer and volume fraction of glass fiber reinforcement in the composite. Optimal conditions to synthesize a PBS/GF composite reaching maximum value of bending strength were 1% TMAIC, 67% fiber volume fraction, and irradiation dose of 200 kGy. These synthesized PBS/GF composites can be degraded by enzymes produced from the microorganism population in soil. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2122–2127, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号