首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The effects of the glass‐bead content and size on the nonisothermal crystallization behavior of polypropylene (PP)/glass‐bead blends were studied with differential scanning calorimetry. The degree of crystallinity decreased with the addition of glass bead, and the crystallization temperature of the blends was marginally higher than that of pure PP at various cooling rates. Furthermore, the half‐time for crystallization decreased with an increase in the glass‐bead content or particle size, implying the nucleating role of the glass beads. The nonisothermal crystallization data were analyzed with the methods of Avrami, Ozawa, and Mo. The validity of various kinetic models for the nonisothermal crystallization process of PP/glass‐bead blends was examined. The approach developed by Mo successfully described the nonisothermal crystallization behavior of PP and PP/glass‐bead blends. Finally, the activation energy for the nonisothermal crystallization of pure PP and PP/glass‐bead blends based on the Kissinger method was evaluated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2026–2033, 2006  相似文献   

2.
The nonisothermal crystallization behavior and kinetics of polytetrafluoroethylene (PTFE) and PTFE/solid glass microsphere (SGM) composites were investigated with differential scanning calorimetry at various cooling rates (?'s). Three methods, namely, the Jeziorny, Ozawa and Mo methods, were used to describe the nonisothermal crystallization process. The results show that the peak temperature, crystallinity (Xc), and crystallization half‐time were strongly dependent on the content of SGMs and ?. The SGMs in the PTFE/SGM composites exhibited a higher nucleation activity. The nonisothermal crystallization kinetics of PTFE and the PTFE/SGM composites was analyzed successfully with the Jeziorny and Mo methods; however, the Ozawa equation was invalid for the nonisothermal crystallization process. The crystallization activation energy determined with the Kissinger equation was remarkably lower when a small amount of SGMs (5%) was added and then gradually increased and finally became slightly lower than that of pure PTFE as the content of SGMs increased up to 25% in the composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Nonisothermal crystallization kinetics of pure polypropylene and polypropylene/down feather fiber composites were investigated using a differential scanning calorimeter at five different cooling rates. The experimental data on crystallinity versus temperature were analyzed by Avrami, Ozawa, and Liu models, respectively. The results indicated that the presence of down feather fiber served as nucleating agent and increased the onset and peak temperatures of crystallization of polypropylene/down feather fiber composites. Interestingly, polypropylene/down feather fiber composites showed a slower primary crystallization and a faster secondary crystallization than pure PP, meaning that down feather fiber retired the crystallizaiton process of PP matrix. The nucleation activity and activation energies were also calculated and agreed well with these results. Wide‐Angle X‐ray diffraction patterns indicated that down feather fiber induced the formation of β‐monoclinic crystals in polypropylene matrix. These phenomena were definitely different from the nonisothermal crystallization kinetics of polypropylene composite based on inorganic particles and organic cellulose fibers. POLYM. COMPOS., 37:3103–3112, 2016. © 2015 Society of Plastics Engineers  相似文献   

4.
5.
The nonisothermal crystallization behavior of linear low-density polyethylene (LLDPE)/glass fiber (GF) composite was investigated by differential scanning calorimetry (DSC). It was observed that the crystallization temperature peak (Tp) of LLDPE composite containing 5.0 wt % GF (LLDPE/GF5) was higher than that of the pure LLDPE at various cooling rates. The half-time of crystallization (t1/2) of LLDPE/GF5 composite was shortened under the effect of GF. The nonisothermal crystallization kinetics of LLDPE and LLDPE/GF5 composite were analyzed through the Avrami, Ozawa, and Mo equations. The results indicated that the data of the nonisothermal crystallization for LLDPE and LLDPE/GF5 composite calculated based on the Ozawa equation did not have the good linear relationship, but the nonisothermal crystallization behaviors of LLDPE and LLDPE/GF5 composite could be successfully described by the modified Avrami and Mo methods. The crystallization rate Zc of the modified Avrami parameter of LLDPE/GF5 composite was higher than that of pure LLDPE at the same cooling rate. The Mo parameter F(T) of LLDPE/GF5 composite was lower than that of LLDPE at the same degree of crystallinity. Through the Kissinger equation, the activation energies Ed of LLDPE and LLDPE/GF5 composite were evaluated, and their values were 312.3 and 251.2 kJ/mol, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
The nonisothermal crystallization kinetics of PP and PP/PES (80/20 wt%) blend was investigated by using differential scanning calorimetry (DSC). It was observed that the crystallization peak temperature (Tp) and the half time (t 1/2) of crystallization of PP/PES blend are slightly but consistently lower than those of PP at various cooling rates. The nonisothermal crystallization data were analyzed by using Avrami equation, Ozawa and Mo method. The validity of the different kinetics models to the nonisothermal crystallization process of two samples is discussed. The Mo method can successfully explain the overall nonisothermal crystallization process of PP and PP/PES blend. The activation energy (ΔE) for nonisothermal crystallization of PP and PP/PES blend is determined by using the Kissinger method. The result shows that the ΔE value of PP is slightly higher than that of PP/PES blend.  相似文献   

7.
The non-isothermal crystallization kinetics of pure poly(ethylene terephthalate) (PET), PET/mica and PET/TiO2-coated mica composites were investigated by differential scanning calorimetry with different theoretical models, including the modified Avrami method, Ozawa method and Mo method. The activation energies of non-isothermal crystallization were calculated by Kissinger method and Flynn–Wall–Ozawa method. The results show that the modified Avrami equation and Ozawa theory fail to describe the non-isothermal crystallization behavior of all composites, while the Mo model fits the experiment data fair well. It is also found that the mica and TiO2-coated mica could act as heterogeneous nucleating agent and accelerate the crystallization rates of PET, and the effect of TiO2-coated mica is stronger than that of mica. The result is further reinforced by calculating the effective activation energy of the non-isothermal crystallization process for all composites using the Kissinger method and the Flynn–Wall–Ozawa method.  相似文献   

8.
9.
The knowledge of biomedical implants ranging from drug delivery devices to tissue engineering and based on bioresorbable polymer composites is increasing, but the study of the crystallization kinetics of these kinds of composites is seldom a concern. The focus of our experimental research was the nonisothermal‐crystallization behavior of poly(3‐hydroxybutyrate) (PHB)/hydroxyapatite (HA) composites, which was monitored by means of differential scanning calorimetry at different cooling rates. Various macrokinetic models were applied to describe the process of nonisothermal crystallization. The results showed that the modified Avrami model and Mo's approach could describe the nonisothermal crystallization of the composites very well, but the Ozawa analysis alone was thought to be rather inapplicable. The values of the half‐time and kinetic crystallizability showed that the crystallization rate increased with increasing cooling rates for both PHB and the composites. The HA particles served as additional nucleation sites, and low levels of HA resulted in dramatic increases in the crystallization rate with respect to pure PHB; however, high HA contents (> 20 wt %) clearly retarded the growth process. The activation energy for nonisothermal crystallization was evaluated with the Kissinger method and was found to vary with the incorporation of HA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5388–5395, 2006  相似文献   

10.
Nonisothermal crystallization of polylactide (PLA)/silica composites prepared by (i) directly blending the PLA with nanoscale colloidal silica sol and by (ii) a sol–gel process are studied by differential scanning calorimeter (DSC) at various heating rates. Samples quenched from the molten state exhibited two melting endotherms (Tml and Tmh) due to melt‐recrystallization during the DSC scans. Lower heating rate and the presence of silica particles generate a lower peak intensity ratio of Tml /Tmh. The nonisothermal crystallization kinetics is analyzed by modified Avrami model, Ozawa model, and Liu‐Mo models. The modified Avrami and Liu‐Mo models successfully described the nonisothermal cold crystallization processes, but Ozawa is inapplicable. The nucleation constant (Kg) is calculated by modified Lauritzen‐Hoffman equation and the activation energy by Augis‐Bennett, Kissinger, and Takhor models. These calculated parameters indicate consistently that the nanoscale silica particles seem to form more heterogeneous nucleation to increase crystallization, but microscale one form hindrance to retard crystallization. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Poly(ethylene terephthalate) (PET)/Barite nanocomposites were prepared by direct melt compounding. The nonisothermal melt crystallization kinetics of pure PET and PET/Barite nanocomposites, containing unmodified Barite and surface‐modified Barite (SABarite), was investigated by differential scanning calorimetry (DSC) under different cooling rates. With the addition of barite nanoparticles, the crystallization peak became wider and shifted to higher temperature and the crystallization rate increased. Several analysis methods were used to describe the nonisothermal crystallization behavior of pure PET and its nanocomposites. The Jeziorny modification of the Avrami analysis was only valid for describing the early stage of crystallization but was not able to describe the later stage of PET crystallization. Also, the Ozawa method failed to describe the nonisothermal crystallization behavior of PET. A combined Avrami and Ozawa equation, developed by Liu, was used to more accurately model the nonisothermal crystallization kinetics of PET. The crystallization activation energies calculated by Kissinger, Takhor, and Augis‐Bennett models were comparable. The results reveal that the different interfacial interactions between matrix and nanoparticles are responsible for the disparate effect on the crystallization ability of PET. POLYM. COMPOS., 31:1504–1514, 2010. © 2009 Society of Plastics Engineers  相似文献   

12.
The preparation of nano poly(phenylsilsesquioxane) particles (nano‐PPSQ) and the influence of nano‐PPSQ on the thermal stability and crystallization of polypropylene (PP) were studied. The morphology and thermal stability of PP/nano‐PPSQ composites were characterized by scanning electron microscopy (SEM) and the thermogravimetric analysis (TGA). The SEM result showed that the particles were well dispersed in the PP matrix. The TGA results of the PP/nano‐PPSQ composites indicated that the incorporation of nano‐PPSQ can improve the thermal stability of PP. The crystallization behavior and kinetics of PP/nano‐PPSQ composite were studied by X‐ray diffraction (XRD) and differential scanning calorimetry (DSC). The XRD revealed that the addition of nano‐PPSQ influences the crystallinity and crystal size of PP. The Avrami, Ozawa, and combined Avrami/Ozawa (Mo method) equations were applied to describe the crystallization kinetics and estimate the kinetic parameters of mathematical models under the nonisothermal crystallization of PP and PP/nano‐PPSQ composites. The results show that nano‐PPSQ influences the crystallization temperature and rate. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
聚乙二醇增塑聚乳酸的非等温结晶动力学研究   总被引:1,自引:0,他引:1  
田怡  钱欣 《聚酯工业》2007,20(2):15-18
采用DSC方法对聚乙二醇(PEG)增塑聚乳酸的非等温结晶动力学进行了研究。结果表明,PEG的加入明显提高了聚乳酸的结晶速度。对所得数据分别用Ozawa方程和莫志深方法进行了处理,发现在给定温度范围里非等温结晶时,PLA/PEG主要是以均相成核的三维生长方式结晶;PLA的结晶速度随着PEG分子质量的增加而升高。  相似文献   

14.
Nonisothermal crystallization behavior of model ecocomposites based on polypropylene (PP), maleic anhydride modified polypropylene (PPm), and kenaf fibers were extensively studied. Melting and crystallization behavior of the composites with 20 wt/wt% kenaf fibers were analyzed by differential scanning calorimetry (DSC) in dynamic regime (with heating rate of 10 K/min, and cooling rates of 5, 10, 15, 20, and 40 K/min). It was shown that the kenaf fiber surface acts as a nucleating agent during nonisothermal crystallization of both PP matrices, shifting the onset and peak crystallization temperatures toward higher values. Crystallization behavior was analyzed by Avrami, Jeziorny, Ozawa, Mo, and Kissinger methods. The results confirmed the applicability of the used models, with exception of the Ozawa approach that was rather inapplicable for these composites. POLYM. ENG. SCI., 47:745–749, 2007. © 2007 Society of Plastics Engineers.  相似文献   

15.
The kinetics of the nonisothermal crystallization process of polyhydroxybutyrate in polyhydroxybutyrate/kenaf fiber model composites (with 80/20 and 70/30 w/w matrix/kenaf fibers) were investigated with differential scanning calorimetry. An analysis of the data was carried out with the Avrami, Ozawa, and modified Avrami and Ozawa models, as well as the Kissinger approach, for the determination of the crystallization activation energy. The Ozawa model was unsuitable for analyzing the nonisothermal data, whereas the other models described these systems very well. By the analysis of all the relevant parameters, the nucleation activity of the kenaf fibers was confirmed. The activation energies from the Kissinger method were evaluated to be 41.2, 32.6, and 26.3 kJ/mol for the pure polymer resin and 80/20 and 70/30 (w/w) polyhydroxybutyrate/kenaf fiber composites, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 804–809, 2006  相似文献   

16.
The morphology, nucleation, and crystallization of polyethylene/carbon nanotubes composites prepared by solution crystallization method of high density polyethylene on Multiwall Carbon Nanotubes (MWNTs) are studied. Transmission electron microscopy (TEM) results show that the center stems of MWNTs are decorated with lamellar crystals. The nonisothermal crystallization kinetics of pure PE and PE/MWNTs composites are investigated by differential scanning calorimetry at various cooling rates. It is found that the Avrami analysis modified by Jeziorny and Mo can describe the nonisothermal crystallization process of pure PE and PE/MWNTs very well. The difference in the value of exponent between PE and PE/MWNTs suggests that addition of the MWNTs influences the mechanism of nucleation and the growth of PE crystallites. On one hand, the increasing of temperature corresponding to the maximum rate of crystallization and the onset crystallization temperature and the study of the nucleation activity reveal that the inorganic component (MWNTs) can act as the nucleating agent to facilitate the crystallization of PE in the hybrids. On the other hand, the decreasing degree of crystallinity and the increasing of half‐crystallization time imply that the MWNTs networks confine the crystallization of PE. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

17.
Polypropylene (PP)/layered double hydroxide (LDH) nanocomposites were prepared via melt intercalation using dodecyl sulfate anion modified LDH and maleated PP as compatibilizing agent. Evidently the interlayer anions in LDH galleries react with maleic anhydride groups of PP-g-MA and lead to a finer dispersion of individual LDH layers in the PP matrix. The nanostructure was characterized by XRD and TEM; the examinations confirmed the nanocomposite formation with exfoliated/intercalated layered double hydroxides well distributed in the PP matrix. The nonisothermal crystallization behavior of resulting nanocomposites was extensively studied using differential scanning calorimetry (DSC) technique at various cooling rates. In nonisothermal crystallization kinetics, the Ozawa approach failed to describe the crystallization behavior of nanocomposites, whereas the Avrami analysis and Jeziorny method well define the crystallization behavior of PP/LDH nanocomposite. Combined Avrami and Ozawa analysis (Liu model) also found useful. The results revealed that very small amounts of LDH (1%) could accelerate the crystallization process relative to the pure PP and increase in the crystallization rates was attributed to the nucleating effect of the nanoparticles. Polarized optical microscopy (POM) observations also support the DSC results. The effective crystallization activation energy was estimated as a function of the relative degree of crystallinity using the isoconversional analysis. Overall, results indicated that the LDH particles in nanometer size might act as nucleating agent and distinctly change the type of nucleation, growth and geometry of PP crystals.  相似文献   

18.
A study has been made of the crystallization behavior of poly(aryl ether ether ketone), PEEK, under nonisothermal conditions. A differential scanning calorimeter (DSC) was used to monitor the energetics of the crystallization process from the melt. For nonisothermal studies, the melt was crystallized by cooling at rates from 1°C/min to 10°C/min. A kinetic analysis based on the recently proposed model for nonisothermal crystallization kinetics to remedy the drawback of the Ozawa equation was applied. The Avrami exponent for the nonisothermal crystallization process was strikingly different from that of the isothermal process, which indicates different crystallization behaviors. The results agree with the morphological observation reported in the literature. This study shows that correct interpretation of the Avrami exponent provides valuable information about the crystal structure and its morphology.  相似文献   

19.
A series of biodegradable aliphatic‐aromatic copolyester, poly(butylene terephthalate‐co‐butylene adipate‐co‐ethylene terephthalate‐co‐ethylene adipate) (PBATE), were synthesized from terephthalic acid (PTA), adipic acid (AA), 1,4‐butanediol (BG) and ethylene glycol (EG) by direct esterification and polycondensation. The nonisothermal crystallization behavior of PBATE copolyesters was studied by the means of differential scanning calorimeter, and the nonisothermal crystallization kinetics were analyzed via the Avrami equation modified by Jeziorny, Ozawa analysis and Z.S. Mo method, respectively. The results show that the crystallization peak temperature of PBATE copolyesters shifted to lower temperature at higher cooling rate. The modified Avrami equation could describe the primary stage of nonisothermal crystallization of PBATE copolyesters. The value of the crystallization half‐time (t1/2) and the crystallization parameter (Zc) indicates that the crystallization rate of PBATE copolyesters with more PTA content was higher than that with less PTA at a given cooling rate. Ozawa analysis was not suitable to study the nonisothermal crystallization process of PBATE copolyesters, but Z.S. Mo method was successful in treatingthis process. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

20.
Crystallization kinetics of polymer/clay systems was the subject of numerous investigations, but still there are some ambiguities in understanding thermal behavior of such systems under isothermal and nonisothermal circumstances. In this work, isothermal rheokinetic and nonisothermal calorimetric analyses are combined to demonstrate crystallization kinetics of polyamide6/nanoclay (PA6/NC) nanocomposites. As the main outcome of this work, we detected different regimes of crystallization and compared them by both isothermal dynamic rheometry and nonisothermal differential scanning calorimetry (DSC), which has not been simultaneously addressed yet. A novel analysis, somehow different from the common ones, is used to convert the storage modulus data to crystallinity values leading to more reasonable Avrami parameters in isothermal crystallization. It was found based on isothermal rheokinetic studies that increase of NC content and shear rate are responsible for erratic behavior of Avrami exponent and crystallization rates. Optimistically, however, isothermal crystallization by rheometer was confirmed by DSC. Nonisothermal calorimetric evaluations suggested an accelerated crystallization of PA6 upon increasing NC content and cooling rate. The crystallization behavior was quantified applying Ozawa (r2 between 0.070 and 0.975), and combinatorial Avrami–Ozawa (r2 between 0.984 and 0.998) models, where the latter appeared more appropriate for demonstration of nonisothermal crystallization of PA6/NC nanocomposites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46364.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号