首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The effects of organoclay type, compatibilizer, and the addition order of components during melt‐blending process on the morphology and thermal, mechanical, and flow properties of ternary nanocomposites based on low‐density polyethylene (LDPE) were investigated. As a compatibilizer, ethylene/methyl acrylate/glycidyl methacrylate (E‐MA‐GMA), as organoclays Cloisites® 15A, 25A, and 30B were used. All samples were prepared by a corotating twin screw extruder, followed by injection molding. The highest increase of the basal spacing for ternary nanocomposites was obtained in LDPE/E‐MA‐GMA/Cloisite® 30B nanocomposites with interlayer spacing of 59.2 Å. Organoclay and compatibilizer addition did not influence the melting/crystallization behavior of the compositions, and both compatibilizer and organoclays had no significant nucleation activity in LDPE. Among the ternary nanocomposites, the maximum increase in tensile strength and tensile modulus values was observed for nanocomposites containing organoclay Cloisite® 15A. The improvement with respect to neat LDPE was 43% for tensile strength and 44% for tensile modulus. According to the mechanical analysis, the best sequence of component addition was the one in which LDPE, organoclay, and compatibilizer were simultaneously fed to the extruder in the first run, and the product of the first run was extruded once more. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
The effects of melt state compounding of ethylene‐butyl acrylate‐maleic anhydride (E‐BA‐MAH) terpolymer and/or three types of organoclays (Cloisite® 15A, 25A, and 30B) on thermal and mechanical properties and morphology of polyamide‐6 are investigated. E‐BA‐MAH formed spherical domains in the materials to which it is added, and increased the impact strength, whereas the organoclays decreased the impact strength. In general, the organoclays increased the tensile strength (except for Cloisite 15A), Young's modulus and elongation at break, but the addition of E‐BA‐MAH had the opposite effect. XRD patterns showed that the interlayer spacing for the organoclays Cloisite 25A and Cloisite 30B increased in both polyamide‐6/organoclay binary nanocomposites and in polyamide‐6/organoclay/impact modifier ternary systems. TEM analysis showed that exfoliated‐intercalated nanocomposites were formed. The crystallinities of polyamide‐6/organoclay nanocomposites were in general lower than that of polyamide‐6 (except for Cloisite 15A). In ternary nanocomposites, crystallinities generally were lower than those of polyamide‐6/organoclay nanocomposites. Cloisite 15A containing ternary nanocomposites had higher tensile and impact strengths and Young's modulus than the ternary nanocomposites prepared with Cloisite 25A and Cloisite 30B, owing to its surface hydrophobicity and compatibility with the impact modifier. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers  相似文献   

3.
Morphology, thermal properties, and microhardness of ethylene‐glycidyl methacrylate copolymer (EGMA)/clay and ethylene‐acrylic ester‐glycidyl methacrylate terpolymer (EAGMA)/clay nanocomposites with different clay concentrations have been studied. The results have shown that EGMA and EAGMA are highly compatible with the organoclays Cloisite®20A (Cl20A) and Cloisite®30B (Cl30B). Intercalated structures are formed in the whole range of Cl20A loadings investigated, whereas partial degradation of the Cl30B organoclay was observed. The thermal characteristics and microhardness of EGMA/clay nanocomposites suggest that the filler dispersion deteriorates at high concentration. The concentrated EGMA/Cl20A nanocomposites have been used as masterbatches to prepare ternary high density polyethylene (HDPE)/Cl20A and low density polyethylene (LDPE)/Cl20A nanocomposites. Diffractometric characterization and scanning electron microscopy observations of these materials have shown that the intercalated structure of the starting EGMA/Cl20A masterbatches is preserved after dilution with the polyolefins. The results suggest that the silicate platelets remain localized within the EGMA droplets in the diluted nanocomposites. The latter display improved microhardness, whereas the mechanical properties, including elongation at break, are comparable with those of the neat polyolefins. Considerable enhancement of the flame retardant properties has been observed for the ternary nanocomposites. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

4.
Ethylene–vinyl alcohol copolymer (EVOH)/organoclay nanocomposites were prepared via a dynamic melt‐intercalation process. The effect of compatibilizers on the melt blending torque, intercalation level, and morphology of EVOH/organoclay systems was investigated. Maleic anhydride grafted ethylene vinyl acetate (EVA‐g‐ MA), or maleic anhydride grafted linear low‐density polyethylene (LLDPE‐g‐MA), were used to compatibilize EVOH with clay, at various concentrations (1, 5, and 10 wt %). Computer‐simulation techniques are used to predict structural properties and interactions of EVOH with compatibilizers in the presence and absence of clay. The simulation results strongly support the experimental findings and their interpretation. X‐ray diffraction shows enhanced intercalation within the galleries when the compatibilizers were added. Interestingly, results were obtained for the EVOH/clay/compatibilizer systems, owing to a high level of interaction developed in these systems. Thermal analysis shows that, upon increasing the compatibilizer content, lower crystallinity levels result, until at a certain compatibilizer content no crystallization is taking place. Significantly higher mixing viscosity levels were obtained for the EVOH/organoclay blends compared with the neat EVOH polymer. The storage modulus was higher compared with the uncompatibilized EVOH/organoclay blend in the presence of EVA‐g‐MA compatibilizer (at all concentrations), and only at low contents of LLDPE‐g‐MA. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2060–2066, 2005  相似文献   

5.
Nanocomposites composed of organoclay and thermoplastic vulcanizates (TPVs) based on uncompatibilized or compatibilized polypropylene (PP)/ethylene–propylene–diene rubber (EPDM) blends were prepared in this study. The morphology of the nanocomposites was studied with wide‐angle X‐ray diffraction and transmission electron microscopy, which suggested that the addition of the compatibilizer played a key role in determining the morphology of the composites because of their interaction with the clay surface. Scanning electron microscopy study indicated the changes in the morphology of the rubber particles. Dynamic mechanical analysis was also applied to the analysis of these phenomena. Moreover, for nanocomposites with uncompatibilized PP/EPDM blends as the matrix, the samples showed tensile enhancement compared with neat TPV. Although the addition of the compatibilizer changed tensile properties of the composites in a rather different trend, the tensile modulus increased dramatically when the compatibilizer was added. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40618.  相似文献   

6.
Toughening of polyamide 6 (PA6) can be achieved by appropriate addition of an elastomeric matrix phase; however, this leads to a loss of rigidity and mechanical strength. As a result, much research has been directed at obtaining an optimal balance between toughness and rigidity for these thermoplastics. The approach explored here is the formation of nanocomposites from PA6/acrylonitrile–butadiene–styrene (ABS) blends prepared by melt mixing with a modified montmorillonite (Cloisite® 30B) and styrene/maleic anhydride copolymer as a compatibilizer. The effect of the mixing sequence of the components on the morphology and properties is a primary focus. The morphology and mechanical properties of the materials were characterized by X‐ray diffraction, electron microscopy, and tensile and impact testing. Incorporation of the compatibilizer in the PA6/ABS blend increased toughness but decreased rigidity. A significant increase of modulus was observed for the nanocomposite blend compared with the blend or the matrix. This increase was attributed to the exfoliation of organoclay layers in the PA6 matrix phase. It was also observed that the morphology of the ABS dispersed phase was considerably influenced by the mixture sequence. POLYM. ENG. SCI., 52:1909–1919, 2012. © 2012 Society of Plastics Engineers  相似文献   

7.
Polystyrene/organoclay nanocomposites were prepared by melt intercalation in the presence of elastomeric impact modifiers. Three different types of organically modified montmorillonites; Cloisite® 30B, 15A, and 25A, were used as reinforcement, whereas poly [styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS‐g‐MA) and poly(ethylene‐b‐butyl acrylate‐b‐glycidyl methacrylate) (E‐BA‐GMA) elastomeric materials were introduced to act as impact modifier. Owing to its single aliphatic tail on its modifier and absence of hydroxyl groups, Cloisite® 25A displayed the best dispersion in the polystyrene matrix, and mostly delaminated silicate layers were obtained in the presence of SEBS‐g‐MA. This was attributed to the higher viscosity of SEBS‐g‐MA compared with both E‐BA‐GMA and poly(styrene‐co‐vinyloxazolin) (PS). In addition, the compatibility between SEBS‐g‐MA and PS was found to be better in comparison to the compatibility between E‐BA‐GMA and PS owing to the soluble part of SEBS‐g‐MA in PS. The clay particles were observed to be located mostly in the dispersed phase leading to larger elastomeric domains compared with binary PS/elastomer blends. The enlargement of the elastomeric domains resulted in higher impact strength values in the presence of organoclay. Good dispersion of Cloisite® 25A in PS/SEBS‐g‐MA blends enhanced the tensile properties of this nanocomposite produced. It was observed that the change in the strength and stiffness of the ternary nanocomposites mostly depend on the type of the elastomeric material. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Fluoroelastomer/clay composites were prepared by melt mixing in an internal mixer using Cloisite® Nanoclays: NA, 15A, 20A, 30B, and 93A at three different concentrations viz. 2.5, 5.0, and 10.0 phr. Rheology, X‐ray diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize the composites prepared. Dynamic rheological measurements showed significant increase in storage moduli (G′) in the terminal frequency region for the uncured composites prepared from Cloisite® 15A and 20A. At higher frequencies, organically modified nanoclays plasticize the polymer matrix leading to lower modulus values. Using all three characterization techniques, Cloisite® 15A and 20A were shown to have intercalated structure in the fluoroelastomer matrix, whereas other nanoclays were shown to have inferior dispersion. The storage modulus increases proportionally with increase in the clay loading and no clay aggregation was observed at higher loadings. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
In this study, the effect of poly(ethylene glycol) (PEG) on the preparation of Poly(lactic acid) (PLA)/PEG blend and its nanocomposites by melt intercalation method were investigated. The PEG having molecular weight of 6,000 g/mol used with various concentrations (0, 10, 15, 20, 25, 30 wt%) in the preparation of PLA/PEG blend. Again, two types of commercialized organoclay [cloisite 93A (C93A) and cloisite 30B (C30B)] were used for the preparation of blend nanocomposites. With the incorporation of PEG into PLA the tensile strength and modulus decreases, whereas the percentage elongation and impact strength increases predominantly. Further, the PLA/PEG blend nanocomposites showed improved tensile strength and modulus with the addition of oraganoclays into the blend. Scanning electron microscopy (SEM) reveals the surface and miscibility study of the PLA/PEG blend. The effect of clay interaction in the PLA/PEG blend nanocomposites were also studied by using wide angle X‐ray diffraction (WAXD) and transmission electron microscopy (TEM). Dynamic mechanical analysis (DMA) was used to investigate the viscoelastic behavior of the blends and its nanocomposites. Differential scanning calorimetry (DSC) study reveals decreased glass transition temperature in case of PLA/PEG blend. The thermal stability of the blend and its nanocomposites were being studied by using thermogravimetric analysis (TGA). POLYM. COMPOS., 35:283–293, 2014. © 2013 Society of Plastics Engineers  相似文献   

10.
The effect of compatibilizers on the blending torque, crystallization behavior, intercalation level, thermal stability and morphology of EVOH/treated clay systems was investigated. Maleic anhydride‐grafted ethylene vinyl acetate (EVA‐g‐MA) or maleic anhydride‐grafted linear low density polyethylene (LLDPE‐g‐MA) were used as compatibilizers of EVOH with clay, in various concentrations (1, 5 and 10 wt%). The blends were processed using Brabender Plastograph and characterized by XRD, SEM, DSC, DMTA and TGA. X‐ray diffraction shows advanced intercalation within the galleries when the compatibilizers were added. Unique results were obtained for the EVOH/clay/compatibilizer systems, owing to a high level of interaction developed in these systems, which plays a major role. Thermal analysis showed that with increasing compatibilizer content, lower crystallinity levels result, until at a certain content no crystallization has taken place. Significantly higher viscosity levels were obtained for the EVOH/clay blends compared to the neat polymer, as seen by a dramatic torque increase when processed in the Brabender machine. The DMTA spectra showed lower Tg values for the compatibilized nanocomposites compared to the neat EVOH and the uncompatibilized composites. Storage modulus was higher compared to the uncompatibilized EVOH/clay blend when EVA‐g‐MA compatibilizer was added (at all concentrations), and only at low contents of LLDPE‐g‐MA. TGA results show significant improvement of the blends thermal stability compared to the neat EVOH, and to the uncompatibilized blend, indicating an advanced intercalation.  相似文献   

11.
Binary polyamide 66 nanocomposites containing 2 wt % organoclay, polyamide 66 blend containing 5 wt % impact modifier, and ternary polyamide 66 nanocomposites containing 2 wt % organoclay and 5 wt % impact modifier were prepared by melt compounding method. The effects of E-GMA and the types of the organoclays on the interaction between the organoclay and the polymer, dispersion of the organoclay, morphology, mechanical, flow, and thermal properties of the nanocomposites were investigated. Partial exfoliation and improved mechanical properties are observed for Cloisite® 15A and Cloisite® 25A nanocomposites. On the other hand, the organoclay was intercalated or in the form of tactoids in Cloisite® 30B nanocomposites. Components of the nanocomposites containing Cloisite® 15A and Cloisite® 25A were compounded in different addition orders. Mixing sequence of the components affected both the dispersion of the organoclay and the mechanical properties drastically. SEM analyses revealed that homogeneous dispersion of the organoclay results in a decrease in the domain sizes and promotes the improvements in the toughness of the materials. Melt viscosity was also found to have a profound effect on the dispersion of the organoclay according to MFI and XRD results. Crystallinity of the nanocomposites did not change significantly. It is only the type of the constituents and their addition order what dramatically influence the nanocomposite properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

12.
Polyethylene‐based ternary nanocomposites were prepared with different clay structures, obtained by the modification of purified Resadiye bentonite as the reinforcement, a random terpolymer of ethylene, butyl acrylate, and maleic anhydride with the trade name Lotader3210 as the compatibilizer, and linear low‐density polyethylene (LLDPE) as the polymer matrix in an intensive batch mixer. The quaternary ammonium/phosphonium salts used for the modification of bentonite were dimethyldioctadecyl ammonium (DMDA) chloride (Cl), tetrakisdecyl ammonium (TKA) bromide (Br), and tributylhexadecyl phosphonium (TBHP) Br. The effects of the physical properties and structure of the organoclay on the clay dispersion were studied at different clay contents (2 and 5 wt %) and at a compatibilizer/organoclay ratio of 2.5. The extent of organoclay dispersion was determined by X‐ray diffraction (XRD) and was verified by transmission electron microscopy (TEM), mechanical testing, and rheological analysis. XRD analysis showed that the nanocomposite with the organoclay DMDA contained intercalated silicate layers, as also verified by TEM. The TEM analysis of the nanocomposites with TBHP exhibited intercalated/partially exfoliated clay dispersion. TKA, with a crowded alkyl environment, sheltered and hindered the intercalation of polymer chains through the silicate layers. In comparison to pure LLDPE, nanocomposites with a 33–41% higher Young's modulus, 16–9% higher tensile strength, and 75–144% higher elongation at break were produced with DMDA and TBHP, respectively (at 5 wt % organoclay). The storage modulus increased by 807–1393%, and the dynamic viscosity increased by 196–339% with respect to pure LLDPE at low frequencies for the samples with DMDA and TBHP (at 5 wt % organoclay). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
The poor impact resistance of Polystyrene (PS) was enhanced by the addition of elastomeric material, SEBS‐g‐MA. To prevent the reduction in strength and stiffness, organoclay Cloisite® 25A was used as filler and introduced into the matrix by a corotating twin screw extruder. Throughout the study, the clay content was kept at 2 wt%, whereas the content of SEBS‐g‐MA was varied between 5 and 40 wt%. It was found that Cloisite® 25A displays well dispersion in the ternary nanocomposites and the degree of dispersion increases with the elastomer content. The elastomeric phase has a greater viscosity than pure PS. Thus, as expected, at low elastomer contents, it forms the dispersed phase in the matrix as droplets. Transmission electron microscopy results show that the clay layers reside at the interphase between PS and elastomer and also inside the elastomeric phase. Owing to the location of the clay particles, the average elastomer domain size in ternary nanocomposites are found to be greater than that in the relative binary blends of PS‐(SEBS‐g‐MA). Moreover, with the organoclay addition, phase inversion point shifts to lower elastomer contents. The mechanical test results showed that the nanocomposites containing 15 and 20 wt% SEBS‐g‐MA have the optimum average domain size that results in high‐impact strength values without deteriorating the tensile properties. POLYM. COMPOS., 31:1853–1861, 2010. © 2010 Society of Plastics Engineers.  相似文献   

14.
Dynamically vulcanized thermoplastic elastomers nanocomposites (TPV nanocomposites) based on linear low density polyethylene (LLDPE)/reclaimed rubber/organoclay were prepared via one‐step melt blending process. Maleic anhydride grafted polyethylene (PE‐g‐MA) was used as a compatibilizing agent. The effects of reclaimed rubber content (10, 30, and 50 wt %), nanoclay content (3, 5, and 7 wt %), and PE‐g‐MA on the microstructure, thermal behavior, mechanical properties, and rheological behavior of the nanocomposites were studied. The TPV nanocomposites were characterized by X‐ray diffraction, transmission electron microscopy, scanning electron microscopy (SEM), differential scanning calorimeter, mechanical properties, and rheometry in small amplitude oscillatory shear. SEM photomicrographs of the etched samples showed that the elastomer particles were dispersed homogeneously throughout the polyethylene matrix and the size of rubber particles was reduced with introduction of the organoclay particles and compatibilizer. The effects of different nanoclay contents, different rubber contents, and compatibilizer on mechanical properties were investigated. Increasing the amount of nanoclay content and adding the compatibilizer result in an improvement of the tensile modulus of the TPV nanocomposite samples. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Three types of composites, namely, polylactide (PLA)/nanoclay, PLA/core–shell rubber, and PLA/nanoclay/core–shell rubber, were melt compounded via a corotating twin‐screw extruder. The effects of two types of organically modified montmorillonite nanoclays (i.e., Cloisite®30B and 20A), two types of core (polybutylacrylate)–shell (polymethylmethacrylate) rubbers (i.e., Paraloid EXL2330 and EXL2314), and the combination of nanoclay and rubber on the mechanical and thermal properties of the composites were investigated. According to X‐ray diffraction and transmission electron microscopy analyses, both types of PLA/5 wt% nanoclay composites had an intercalated morphology. In comparison with pure PLA, both types of PLA/5 wt% nanoclay composites had an increased modulus, similar impact strength, slightly reduced tensile strength, and significantly reduced strain at break. On the other hand, PLA/EXL2330 composites with a rubber loading level of 10 wt% or higher had a much higher impact strength and strain at break, but a lower modulus and strength when compared with pure PLA. The simultaneous addition of 5 wt% nanoclay (Cloisite®30B) and 20 wt% EXL2330 resulted in a PLA composite with a 134% increase in impact strength, a 6% increase in strain at break, a similar modulus, and a 28% reduction in tensile strength in comparison with pure PLA. POLYM. ENG. SCI. 46:1419–1427, 2006. © 2006 Society of Plastics Engineers  相似文献   

16.
The effects of ethylene-methyl acrylate-glycidyl methacrylate (E-MA-GMA) terpolymer and three types of organoclays (Cloisite® 15A, 25A, and 30B) on mechanical and rheological properties, and morphology of impact modified polyamide-6/montmorillonite ternary nanocomposites were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), parallel disk rheometry, melt flow index measurements, and tensile and impact tests. The materials were prepared by melt blending using a co-rotating twin-screw extruder. XRD and TEM analyses showed that exfoliated-intercalated nanocomposites were formed in both polyamide-6/Cloisite® 25A and Cloisite® 30B binary nanocomposites and in ternary systems. SEM micrographs showed that rubber domain sizes were larger in the nanocomposites than in their corresponding polyamide-6/elastomer blends. Generally, tensile strength, Young's modulus, and elongation at break decreased with the addition of elastomer to polyamide-6/organoclay binary nanocomposites. In the melt state, liquid-like behavior of polyamide-6 slightly turned to pseudo solid-like in the binary and ternary nanocomposites. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
A two‐step process was developed to prepare nanocrystalline cellulose (NCC) reinforced poly(lactic acid) (PLA) nanocomposites using polyethylene glycol (PEG) as a compatibilizer. It was composed of solvent mixing and melt blending. The NCC was well dispersed in the PLA matrix. A network was formed at high NCC‐to‐PEG ratio at which the amount of the PEG was not enough to cover all the surfaces of the NCC. The formation of the network was confirmed by the occurrence of a plateau for the storage modulus at low frequency. The incorporation of the PEG and NCC could improve the crystallinity of the PLA. The elongation at break increased from 11.0% for the neat PLA to 106.0% for the composites including 6 wt % NCC, impact strength was improved from 0.864 to 2.64 kJ m?2 and tensile strength did not change significantly for the same 6 wt % NCC composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44683.  相似文献   

18.
Low density polyethylene (LDPE)/clay nanocomposites, which can be used in packaging industries, were prepared by melt‐mix organoclay with polymer matrix (LDPE) and compatibilizer, polyethylene grafted maleic anhydride (PEMA). The pristine clay was first modified with alkylammonium salt surfactant, before melt‐mixed in twin screw extruder attached to blown‐film set. D‐spacing of clay and thermal behavior of nanocomposites were characterized by Wide‐Angle X‐ray Diffraction (WAXD) and differential scanning calorimetry (DSC), respectively. WAXD pattern confirmed the increase in PEMA contents exhibited better dispersion of clay in nanocomposites. Moreover, DSC was reported the increased PEMA contents caused the decrease in degree of crystallinity. Mechanical properties of blown film specimens were tested in two directions of tensile tests: in transverse tests (TD tests) and in machine direction tests (MD tests). Tensile modulus and tensile strength at yield were improved when clay contents increased because of the reinforcing behavior of clay on both TD and MD tests. Tensile modulus of 7 wt % of clay in nanocomposite was 100% increasing from neat LDPE in TD tests and 17% increasing in MD tests. However, elongation at yield decreased when increased in clay loading. Oxygen permeability tests of LDPE/clay nanocomposites also decreased by 24% as the clay content increased to 7 wt %. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
This work presented the influence of thermoplastic poly(ether-ester) elastomer (TPEE) and bentonite (BTN) on improving the mechanical and thermal properties of poly(lactic acid) (PLA). PLA was initially melt mixed with TPEE at six different loadings (5–30 wt%) on a twin screw extruder and then injection molded. The mechanical tests revealed an increasing impact strength and elongation at break with increasing TPEE loading, but a diminishing Young's modulus and tensile strength with respect to pure PLA. The blend at 30 wt% TPEE provided the optimum improvement in toughness, exhibiting an increase in the impact strength and elongation at break by 3.21- and 10.62-fold over those of the pure PLA, respectively. Scanning electron microscopy analysis illustrated a ductile fractured surface of the blends with the small dispersed TPEE domains in PLA matrix, indicating their immiscibility. The 70/30 (wt/wt) PLA/TPEE blend was subsequently filled with three loadings of BTN (1, 3, and 5 parts by weight per hundred of blend resin [phr]), where the impact strength, Young's modulus, tensile strength and thermal stability of all the blends were improved, while the elongation at break was deteriorated. Among the three nanocomposites, that with 1 phr BTN formed exfoliated structure and so exhibited the highest impact strength, elongation at break, and tensile strength compared to the other intercalated nanocomposites. Moreover, the addition of BTN was found to increase the thermal stability of the neat PLA/TPEE blend due to the barrier properties and high thermal stability of BTN.  相似文献   

20.
In situ fibrillation of PP/PA6 blends (85/15 wt %) is investigated in presence of two kinds of organically modified montmorillonite, differing by the polarity of their surfactant. The organoclay is primary dispersed either in the PP (for the low‐polarity Cloisite® 15A) or in the PA6 (for the high‐polarity Cloisite® 30B), according to its assumed affinity. In absence of organoclay, a fibrillar morphology is achieved after the melt‐blending and hot‐stretching step, as evidenced by SEM analysis. Upon clay addition, different morphological trends are evidenced. The C15A leads to a refinement of the fibrils whether the C30B induces a transition from fibrillar to nodular structure. These trends are ascribed to drastic changes in viscosity and elasticity ratios, due to the filler initial localization. Several techniques (DSC, STEM) point out a C15A migration from the PP to the PP/PA6 interface. Rheological measurements highlight the possibility of a double‐percolation phenomenon, linked to the fibrillar microstructure of the PP/PA6/C15A blend. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41680.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号