首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we provide an overview of recent progress in toughening and damage self‐healing of polymer–matrix composites (PMCs) reinforced with electrospun or solution‐blown nanofibers at interfaces with an emphasis on the innovative processing techniques and toughening and damage self‐healing characterization. Because of their in‐plane fiber architecture and layered structure, high‐performance laminated PMCs typically carry low interfacial strengths and interlaminar fracture toughnesses in contrast to their very high in‐plane mechanical properties. Delamination is commonly observed in these composite structures. Continuous polymer and polymer‐derived carbon nanofibers produced by electrospinning, solution blowing, and other recently developed techniques can be incorporated into the ultrathin resin‐rich interlayers (with thicknesses of a few to dozens of micrometers) of these high‐performance PMCs to form nanofiber‐reinforced interlayers with enhanced interlaminar fracture toughnesses. When incorporated with core–shell healing‐agent‐loaded nanofibers, these nanofiber‐richened interlayers can yield unique interfacial damage self‐healing. Recent experimental investigations in these topics are reviewed and compared, and recently developed techniques for the scalable, continuous fabrication of advanced nanofibers for interfacial toughening and damage self‐healing of PMCs are discussed. Developments in the near future in this field are foreseen. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2225–2237, 2013  相似文献   

2.
Dual components of a self‐healing epoxy system comprising a low viscosity epoxy resin, along with its amine based curing agent, were separately encapsulated in a polyacrylonitrile shell via coaxial electrospinning. These nanofiber layers were then incorporated between sheets of carbon fiber fabric during the wet layup process followed by vacuum‐assisted resin transfer molding to fabricate self‐healing carbon fiber composites. Mechanical analysis of the nanofiber toughened composites demonstrated an 11% improvement in tensile strength, 19% increase in short beam shear strength, 14% greater flexural strength, and a 4% gain in impact energy absorption compared to the control composite without nanofibers. Three point bending tests affirmed the spontaneous, room temperature healing characteristics of the nanofiber containing composites, with a 96% recovery in flexural strength observed 24 h after the initial bending fracture, and a 102% recovery recorded 24 h after the successive bending fracture. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44956.  相似文献   

3.
This article reports a new needleless emulsion electrospinning method for scale‐up fabrication of ultrathin core–shell polyacrylonitrile (PAN)/isophorone diisocyanate (IPDI) fibers. These core–shell fibers can be incorporated at the interfaces of polymer composites for interfacial toughening and self‐repairing due to polymerization of IPDI triggered by environmental moisture. The electrospinnable PAN/IPDI emulsion was prepared by blending PAN/N,N‐dimethylformamide and IPDI/N,N‐dimethylformamide solutions (with the solute mass fraction of 1 : 1). The electrospinning setup consisted of a pair of aligned metal wires as spinneret (positive electrode) to infuse the PAN/IPDI emulsion and a rotary metal disk as fiber collector (negative electrode). The formed ultrathin core–shell PAN/IPDI fibers were collected with the diameter in the range from 300 nm to 3 μm depending on the solution concentration and process parameters. Optical microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy were used to characterize the core–shell nanostructures. Dependencies of the fiber diameter on the PAN/IPDI concentration, wire spacing, and wire diameter were examined. Results show that needleless emulsion electrospinning provides a feasible low‐cost manufacturing technique for scalable, continuous fabrication of core–shell nanofibers for potential applications in self‐repairing composites, drug delivery, etc. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40896.  相似文献   

4.
A carbon fiber/epoxy composite modified by electrospun coaxial dicyclopentadiene/poly(phthalazinone ether sulfone ketone) (DCPD/PPESK) nanofibers was successfully fabricated, and the addition of DCPD/PPESK fibrous membranes made the composite have remarkable self-healing ability, and meanwhile effectively improve its mechanical properties. Results of polarization microscope observation and thermogravimetric analysis confirmed liquid DCPD as the healing agent was encapsulated into the PPESK coaxial nanofiber. Three-point bending test was utilized to evaluate the mechanical properties and self-healing effect of the composite. Experimental results indicated that the embedded nanofibers significantly improved the toughness of the composite, and maintained good mechanical properties even at low resin content. Most importantly, the flexural strength of the composite recovered to close to 90% observed 2 h after the bending failure.  相似文献   

5.
Ceramic Fe–Al–O nanofibers with a core‐shell architecture were obtained by electrospinning. The fibers consist of an Fe–Al–O core with novel lamellar‐like mesopores and an Fe‐rich shell. A mechanism of this unique core and shell formation is outlined and confirmed. The described mesoporous nanofibers are highly promising for new research and applications involving catalysis, sensing and absorption of mobile components on the accessible porous core surface.  相似文献   

6.
This article presents a novel processing method of a self‐healing acrylic thermoplastic material starting from a healing agent in solution form. The self‐healing system consisted of a solution of the healing agent dicyclopentadiene (DCPD) in dimethylformamide (DMF) and a solution of the catalyst bis(tricyclohexylphosphine) benzylidene ruthenium (IV) dichloride (called Grubbs' catalyst) in dichloromethane (DCM). Hollow glass tubes filled with the self‐healing components were incorporated into autopolymerizing acrylic resins. The one set of tubes was filled with a solution of DCPD (containing the dye Rhodamine B as a marker) and the other set with a solution of Grubbs' catalyst in dichloromethane. FTIR and DSC analyses revealed that a poly(DCPD) film formed at the healed interface. The low energy impact tests of the samples showed a recovery of 83% after 4 days. The benefits of the Grubb's catalyst solution are twofold; besides the repair of the cracks, which is common for such a system, the reaction could decrease the content of residual monomer in the acrylic resin, which could reduce diffusion of residual monomer out of the resins. POLYM. ENG. SCI., 56:251–257, 2016. © 2015 Society of Plastics Engineers  相似文献   

7.
Agro‐wastes, oil palm trunk core or sap was utilized for the production of new palm‐wood material using phenol formaldehyde resin as a matrix. The kiln‐dried (moisture content 10%) oil palm trunk was impregnated with phenol formaldehyde resin using a high power vacuum pump. The oil palm trunk core lumber (OPTCL) was loaded with different percentages of phenol formaldehyde (PF) resin. The mechanical properties (tensile, flexural, and impact) and physical properties (water absorption and density) were studied and compared with rubberwood. Testing of mechanical and physical properties was done according to the ASTM standard. The morphology of the resin loaded OPTCL was analyzed by using Scanning Electron Microscopy (SEM). In general, the result showed that impregnated OPTCL exhibited good mechanical and physical properties when compared with untreated oil palm trunk core (OPTCL with 0% resin content) and rubberwood. Tensile and flexural strength of OPTCL increased with the increase in the resin content up to 15% and showed a decreasing trend with the increase in the loading percentage beyond 15%.The impact strength also increased with the increase in the resin content from 5% to 15%. However, impregnated OPTCL with 15% resin loading showed lower water absorption uptake as compared with the other composite materials and rubberwood. SEM micrograph confirmed that the resin was impregnated efficiently within the pores of OPTCL fibers. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

8.
We have successfully synthesized polyacrylonitrile (PAN) nanofibers impregnated with Ag nanoparticles by electrospinning method at room temperature. Briefly, the PAN‐Ag composite nanofibers were prepared by electrospinning PAN (10% w/v) in dimethyl formamide (DMF) solvent containing silver nitrate (AgNO3) in the amounts of 8% by weight of PAN. The silver ions were reduced into silver particles in three different methods i.e., by refluxing the solution before electrospinning, treating with sodium borohydride (NaBH4), as reducing agent, and heating the prepared composite nanofibers at 160°C. The prepared PAN nanofibers functionalized with Ag nanoparticles were characterized by field emission scanning electron microscopy (FESEM), SEM elemental detection X‐ray analysis (SEM‐EDAX), transmission electron microscopy (TEM), and ultraviolet‐visible spectroscopy (UV‐VIS) analytical techniques. UV‐VIS spectra analysis showed distinct absorption band at 410 nm, suggesting the formation of Ag nanoparticles. TEM micrographs confirmed homogeneous dispersion of Ag nanoparticles on the surface of PAN nanofibers, and particle diameter was found to be 5–15 nm. It was found that all the three electrospun PAN‐Ag composite nanofibers showed strong antibacterial activity toward both gram positive and gram negative bacteria. However, the antibacterial activity of PAN‐Ag composite nanofibers membrane prepared by refluxed method was most prominent against S. aureus bacteria. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Urea–formaldehyde (UF) microcapsules filled with dicyclopentadiene (DCPD) show potential for making self‐healing dental restorative materials. To enhance the physical properties of the capsules, the urea was partially replaced with 0–5% melamine. The microcapsules were analyzed by different microscopic techniques. DSC was used to examine the capsule shell, and the core content was confirmed by 1H NMR spectroscopy. Capsules in the range of 50–300 μm were then embedded in a dental composite matrix consisting of bisphenol‐A‐glycidyl dimethacrylate (Bis‐GMA) and triethylene‐glycol dimethacrylate (TEGDMA). Flexural strength, microhardness, and nanoindentation hardness measurements were performed on the light‐cured specimens. Optical microscopy (OM) examination showed a random distribution of the microspheres throughout the host material. The incorporation of small amounts of the microcapsules did not affect the performance of the matrix material. Scanning electron microscopy (SEM) analysis revealed excellent bonding of the microcapsules to the host material which is a characteristic of utter importance for maintaining the very good mechanical properties of a dental composite with self‐healing ability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

10.
In this work, quasi‐carbon fabrics were produced by quasi‐carbonization processes conducted at and below 1200°C. Stabilized polyacrylonitrile (PAN) fabrics and quasi‐carbon fabrics were used as reinforcements of phenolic composites with a 50 wt %/50 wt % ratio of the fabric to the phenolic resin. The effect of the quasi‐carbonization process on the flexural properties, interfacial strength, and dynamic mechanical properties of quasi‐carbon/phenolic composites was investigated in terms of the flexural strength and modulus, interlaminar shear strength, and storage modulus. The results were also compared with those of a stabilized PAN fabric/phenolic composite. The flexural, interlaminar, and dynamic mechanical results were quite consistent with one another. On the basis of all the results, the quasi‐static and dynamic mechanical properties of quasi‐carbon/phenolic composites increased with the applied external tension and heat‐treatment temperature increasing and with the heating rate decreasing for the quasi‐carbonization process. This study shows that control of the processing parameters strongly influences not only the mechanical properties of quasi‐carbon/phenolic composites but also the interlaminar shear strength between the fibers and the matrix resin. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
To reproduce the excellent characteristics of natural fibers like wool and proteins, a novel two‐spinneret electrospinning technology was demonstrated in this communication, which can generate three‐dimensional self‐crimp fibers of HSPET/PTT, HSPET/PAN and PU/PAN directly. In the apparatus, two spinnerets were used to prevent gel formation or precipitation of the polymer, and the voltages of opposite polarities were applied to the spinnerets respectively. And the elecctrospun fibers morphology was observed by using scanning electron microscopy (SEM). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
An approach to the scale‐up of co‐electrospinning via a flat core‐shell structure spinneret has been developed in this study. The spinneret with a flat surface involves shell‐holes and core‐needles. Electric field simulation reveals that the flat core‐shell spinneret configuration creates a more uniform electric field gradient. Experimental study shows that in comparison with the conventional needle co‐electrospinning, core‐shell nanofibers produced by this new designed setup are finer and of better morphology. Composite nanofibers with special morphologies can be fabricated by modifying the structure of this spinneret. The production rate of the core‐shell nanofibers can be enhanced by increasing the hole and needle number of the spinneret. This novel design is expected to provide a promising method towards the massive production of core‐shell nanofibers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41027.  相似文献   

13.
Kevlar‐29 fibers have high strength and stiffness but nylon 6,6 fibers have greater ductility. Thus by commingling these fibers prior to molding in a resin, the resulting hybrid composite may be mechanically superior to the corresponding single fiber‐type composites. The contribution made by viscoelastically generated pre‐stress, via the commingled nylon fibers, should add further performance enhancement. This paper reports on an initial study into the Charpy impact toughness and flexural stiffness of hybrid (commingled) nylon/Kevlar fiber viscoelastically pre‐stressed composites at low fiber volume fractions. The main findings show that (i) hybrid composites (with no pre‐stress) absorb more impact energy than Kevlar fiber‐only composites; (ii) pre‐stress further increases impact energy absorption in the hybrid case by up to 33%; (iii) pre‐stress increases flexural modulus by ∼40% in the hybrid composites. These findings are discussed in relation to practical composite applications. POLYM. COMPOS., 35:931–938, 2014. © 2013 Society of Plastics Engineers  相似文献   

14.
In this article, polydopamine (PDA) is efficiently adhered on the surface of graphene oxide (GO) by mussel‐inspired chemistry. The obtained reduced GO/PDA (RGO@PDA) nanocomposites are used for catalyzing reversible coordination‐mediated polymerization under microwave radiation. Well‐defined and iodine‐terminated polyacrylonitrile‐co‐poly(n‐butyl acrylate) (PAN‐co‐PnBA) is successfully fabricated by using RGO@PDA nanocomposites as catalysts. Importantly, green and novel strategy of PAN‐co‐PnBA‐type self‐healing nanocomposite materials is further fabricated with RGO@PDA as additive after polymerization as catalyst in one‐pot. As a reinforcement agent, RGO@PDA can also improve the mechanical and self‐healing properties of hybrid materials, which opens up a novel and green methodology for the preparation of self‐healing hybrid materials.  相似文献   

15.
Composite nanofiber meshes of well‐aligned polyacrylonitrile (PAN)/polyvinylpyrrolidone (PVP) nanofibers containing multiwalled carbon nanotubes (MWCNTs) were successfully fabricated by a magnetic‐field‐assisted electrospinning (MFAES) technology, which was confirmed to be a favorable method for preparation of aligned composite nanofibers in this article. The MFAES experiments showed that the diameters of composite nanofibers decreased first and then increased with the increase of voltage and MWCNTs content. With the increase of voltage, the degree of alignment of the composite nanofibers decreased, whereas it increased with increasing MWCNTs concentration. Transmission electron microscopy observation showed that MWCNTs were parallel and oriented along the axes of the nanofibers under the low concentration. A maximum enhancement of 178% in tensile strength was manifested by adding 2 wt % MWCNTs in well‐aligned composite nanofibers. In addition, the storage modulus of PAN/PVP/MWCNTs composite nanofibers was significantly higher than that of the PAN/PVP nanofibers. Besides, due to the highly ordered alignment structure, the composite nanofiber meshes showed large anisotropic surface resistance, that is, the surface resistance of the composite nanofiber films along the fiber axis was about 10 times smaller than that perpendicular to the axis direction. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41995.  相似文献   

16.
Electrospinning uses a high voltage electric field to produce fine fibers. A new phenomenon of self‐assembly in the electrospinning of polyurethane nanofibers is observed. This report is the first known self‐assembling phenomenon in polyurethane electrospun nanofibers. Electrospun polyurethane nanofibers self‐assemble into unique honeycomb patterns on the collector surface. This novel observation opens up new and interesting opportunities for electrospun fibers in the areas of drug delivery devices, protective clothing, filters, and tissue scaffolds. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3121–3124, 2006  相似文献   

17.
A novel spinning acrylic polymer containing silk protein was synthesized by copolymerization of acrylonitrile (AN) and silk fibroin peptide (SFP) modified by acryloyl chloride (AC) with vinyl groups. From results of the examination to the chemical compositions, we established that the modified SFP is more reactive than AN in the copolymerization. The intrinsic viscosity values of these copolymers showed that the copolymers have good spinnability, which were synthesized under the condition of adding a trace of metal ions into the synthesizing solvent. These copolymers exhibited good thermal property. The fiber based on the poly(acrylonitrile‐co‐silk fibroin peptide) was prepared and characterized by SEM, FTIR measurement of its shell and core flakes, and moisture absorption. The fiber exhibited a smooth surface and could be assumed to have excellent adhesive property between SFP and PAN. Furthermore, these fibers showed a core–shell structure and excellent moisture absorption. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1540–1547, 2004  相似文献   

18.
Single‐walled carbon nanotube (SWNT)/poly(methyl methacrylate) and SWNT/polyacrylonitrile composite nanofibers were electrospun with SWNT bundles as the cores and the polymers as the shells. This was a novel approach for processing core (carbon nanotube)–shell (polymer) nanofibers. Raman spectroscopy results show strain‐induced intensity variations in the SWNT radial breathing mode and an upshift in the tangential (G) and overtone of the disorder (G′) bands, suggesting compressive forces on the SWNTs in the electrospun composite fibers. Such fibers may find applications as conducting nanowires and as atomic force microscopy tips. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1992–1995, 2005  相似文献   

19.
The physical properties of microcapsules are largely influenced by the synthesis conditions such as weight ratio of core/shell material, agitation rate, reaction time, and different emulsifier. Different synthesis condition would lead to different property. It is an important issue for application in composites that require self‐healing microcapsules possessing rough surface morphology, less adhesion, less core material permeability, appropriate diameter and core content, and adequate shell thickness. The properties of microcapsules influenced by the synthesis conditions were investigated systematically in this article. According to orthographic factorial design, the most influencing factor on microcapsule's yield, core material, average shell thickness and average diameter, are concluded, respectively. The synthesis parameters when the epoxy‐containing microcapsules exhibit the optimum properties are concluded: 1.4 : 1 for the weight ratio of core/shell material, 250 rpm for the agitation rate, 3 h for the reaction time and 1.5% content for the emulsifier DBS. The chemical structure of resultant microcapsules is confirmed by FT‐IR, and core material of microcapsule exhibits reactivity through DSC measurement. Subsequently, the microcapsules are characterized by SEM, OM, and contact angle experiment so as to provide parameters of microcapsule's physical properties for making binary self‐healing materials. As a result, the resultant microcapsules are suitable for fabricating self‐healing materials. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Carbon nanotubes (CNTs) are thought to be perfect enhancive materials for composites. Multi‐wall carbon nanotubes were directly electrospun into polyacrylonitrile (PAN) nanofibers via both traditional electrospinning and vibration‐electrospinning. The fibers obtained were examined by scanning electron microscopy and X‐ray diffraction. CNTs were aggregated heavily in the fibers obtained by traditional electrospinning while CNTs were well distributed and aligned in PAN fibers obtained by vibration‐electrospinning. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号