首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
High-temperature corrosion tests of alloys, Nimonic 80A, Inconel 718 and Inconel C-276, were investigated at 680°C in molten alkali fluoride salt (LiF–NaF–KF: 46.5–11.5–42%) environment. In this work, techniques included were weight loss measurements and potentiodynamic polarisation curves measurements. Inconel C-276 and Inconel 718 showed better corrosion resistance, while Nimonic 80A exhibited comparatively lower corrosion resistance. The high-temperature corrosion behaviour was observed using measurements of the oxide morphology and thickness. The corrosion rates were determined by recording the weight changes of the sample alloys at different time intervals. Microstructural examination showed the depletion of Cr near the surface of the alloys and hence the significant weight loss in the early stages of corrosion tests. The corrosion mechanism of the alloys is discussed in detail.  相似文献   

2.
Platinum electroplating layers (3 and 7 μm thick) were deposited on the surface of the Inconel 713 LC, CMSX 4, and Inconel 625 Ni-base superalloys. Diffusion treatment at 1050°C for 2 h under argon atmosphere was performed after electroplating. Diffusion treated samples were aluminized according to the low activity CVD process at 1050°C for 8 h. The nonmodified aluminide coatings consist of NiAl phase. Platinum modification let to obtain the (Ni,Pt)Al phase in coatings. The coated samples were subjected to cyclic oxidation testing at 1100°C. It was discovered that increase of the platinum electroplating thickness from 3 to 7 μm provides the improvement of oxidation resistance of aluminide coatings. Increase of the platinum thickness causes decreases in weight change and decreases in parabolic constant during oxidation. The platinum provides the pure Al2O3 oxide formation, slow growth oxide layer, and delay the oxide spalling during heating-cooling thermal cycles.  相似文献   

3.
The electrolytic reduction of a spent oxide fuel involves the liberation of the oxygen in molten LiCl electrolyte, which is a chemically aggressive environment that is excessively corrosive for typical structural materials. Accordingly, it is essential to choose the optimum material for the processing equipment that handles the molten salt. In this study, the corrosion behaviors of Haynes 263, Haynes 75, Inconel 718 and Inconel X-750 in a molten LiCl?Li2O salt under an oxidizing atmosphere were investigated at 650°C for 72 to 216 hrs. The Haynes 263 alloy showed the best corrosion resistance among the examined alloys. The corrosion products of Haynes 263 were Li(Ni,Co)O2 and LiTiO2; those of Haynes 75 were Cr2O3, NiFe2O4, LiNiO2 and Li2FiFe2O4; while Cr2O3, NiFe2O4 and CrNbO4 were identified as the corrosion products of Inconel 718. Inconel X-750 produced Cr2O3, NiFe2O4 and (Cr, Nb, Ti)O2 as its corrosion products. Haynes 263 showed a localized corrosion behavior while Haynes 75, Inconel 718 and Inconel X-750 showed a uniform corrosion behavior.  相似文献   

4.
The AISI 444 stainless steel (SS) has become an option to substitute the AISI 316L SS because of its low cost and satisfactory corrosion resistance. However, the use of AISI 444 alloy tubes in heat exchangers causes the welding of a dissimilar joint. The aim of this study was evaluate the corrosion resistance of the tube-to-tubesheet welded by a TIG process composed of AISI 316L and AISI 444. Preparation of samples was executed through replication of tube-to-tubesheet joints. In order to test the corrosion resistance of the welded joint, the following tests were applied: sensitisation, mass loss from room temperature up to 90 °C and electrochemical corrosion tests in 0.5 mol/L HCl and 0.5 mol/L H2SO4 electrolytes. The results have shown that the dissimilar joint suffers galvanic corrosion with increased degradation of the heat-affected zone of the AISI 444 tube. Nevertheless, the mechanisms of localised corrosion (pit and intergranular) were more active in the AISI 316L alloy. It is concluded that the dissimilar joint showed better corrosion resistance than the welded joint composed solely of AISI 316L at temperatures up to 70 °C, as the conditions observed in this work.  相似文献   

5.
Nitrogen‐based compounds can potentially be used as alternative non‐carbon or low‐carbon fuels. Nevertheless, the corrosion of construction materials at high temperatures and pressures in the presence of such fuel has not been reported yet. This work is focused on the corrosion of AISI Al 6061, 1005 carbon steel (CS), 304, 316L, 310 austenitic stainless steels (SS) and 680 nickel alloy in highly concentrated water solution of ammonium nitrate and urea (ANU). The corrosion at 50 °C and ambient pressure and at 350 °C and 20 bar was investigated to simulate storage and working conditions. Sodium chloride was added to the fuel (0–5 wt%) to simulate industrial fertilizers and accelerated corrosion environment. Heavy corrosion of CS was observed in ANU solution at 50 °C, while Al 6061, 304 and 316L SS showed high resistance both to uniform and pitting corrosion in ANU containing 1% of sodium chloride. Addition of 5% sodium chloride caused pitting of Al 6061 but had no influence on the corrosion of SS. Tests in ANU at 350 °C and 20 bar showed pitting on SS 304 and 316L and 680 nickel alloy. The highest corrosion resistance was found for SS 310 due to formation of stable oxide film on its surface.  相似文献   

6.
Nano-crystalline TiAlCrSiYN plasma vapor deposited (PVD) coatings were developed for oxidation and wear protection at elevated temperatures. Compositional tuning of the coatings was performed to enhance oxidation protection at elevated temperatures.The oxidation kinetics of the coatings has been studied over 180 h at 900 °C in air. Post-oxidation microstructural examinations of specimens were performed using transmission electron microscopy (TEM), secondary electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and glow discharge optical emission spectroscopy (GDOES). Micro mechanical characteristics of the coating were studied using a micro materials nanotest system. Wear resistance of the coatings were studied during turning of Inconel 718.Experimental results clearly indicate that the aluminum-rich PVD TiAlCrSiYN coatings with 60 at.% of Al can improve oxidation resistance of titanium aluminide alloy at the temperature 900 °C as well as wear resistance during machining of Inconel 718. It was shown that during oxidation, continuous protective alumina-based oxide films form on the surface. These oxides are predominantly (Al,Cr)2O3-based films. Self-healing behavior of the TiAlCrSiYN coatings was observed in its ultra-fine nano-crystalline structure.  相似文献   

7.
This paper reports the corrosion behavior of Ni alloy coatings deposited by high velocity oxyfuel spraying, and representative boiler substrate alloys in simulated high temperature biomass combustion conditions. Four commercially available oxidation resistant Ni alloy coating materials were selected: NiCrBSiFe, alloy 718, alloy 625, and alloy C-276. These were sprayed onto P91 substrates using a JP5000 spray system. The corrosion performance of the coatings varied when tested at ~525, 625, and 725 °C in K2SO4-KCl mixture and gaseous HCl-H2O-O2 containing environments. Alloy 625, NiCrBSiFe, and alloy 718 coatings performed better than alloy C-276 coating at 725 °C, which had very little corrosion resistance resulting in degradation similar to uncoated P91. Alloy 625 coatings provided good protection from corrosion at 725 °C, with the performance being comparable to wrought alloy 625, with significantly less attack of the substrate than uncoated P91. Alloy 625 performs best of these coating materials, with an overall ranking at 725 °C as follows: alloy 625 > NiCrBSiFe > alloy 718 ? alloy C-276. Although alloy C-276 coatings performed poorly in the corrosion test environment at 725 °C, at lower temperatures (i.e., below the eutectic temperature of the salt mixture) it outperformed the other coating types studied.  相似文献   

8.
张静  单磊  苏晓磊  李金龙  董敏鹏 《表面技术》2018,47(12):198-204
目的 讨论海水环境下不同基体材料对Cr/CrN交替的多层复合涂层磨蚀性能的影响,为海水环境下耐磨蚀材料基体的选择和应用提供参考。方法 采用多弧离子镀技术在316L不锈钢和TC4钛合金基体上沉积Cr/CrN多层复合涂层,通过XRD、SEM等技术对涂层材料的微观结构进行表征,通过硬度测试、结合力测试、电化学分析、摩擦磨损试验等技术对涂层材料的力学性能、电化学性能以及摩擦学性能进行分析,比较不同基体对Cr/CrN多层涂层在海水环境中磨蚀性能的影响。结果 以TC4钛合金为基体的Cr/CrN多层涂层的硬度为1727.2HV0.3,虽略小于以316L不锈钢为基体的涂层硬度(2241.5HV0.3),但其在膜-基结合力、海水环境下电化学性能和摩擦学性能等方面均优于以316L不锈钢为基体的涂层。结合力测试中,以TC4为基体的多层涂层初始裂纹出现在31 N,扩展裂纹出现在42 N,大于316L基体涂层的22 N和35 N。电化学测试中TC4基体涂层的腐蚀电位为?0.20 V,大于316L基体涂层的腐蚀电位(?0.21 V)。海水环境下TC4基体涂层的平均摩擦系数和磨损率分别为0.35和2.9950×10?5 mm3/(N?m),均小于316 L基体涂层的平均摩擦系数(0.36)和磨损率(4.9895×10?5 mm3/(N?m))。结论 TC4钛合金更适合作为海水环境用Cr/CrN多层涂层耐磨蚀材料的基体材料。  相似文献   

9.
In one of the gas processing facilities in Abu Dhabi, UAE; a case of 316L stainless steel material failure occurred in the fractionating column due to stress cracking corrosion twice in a cycle of less than 2 years. This paper studies the stress corrosion cracking behavior of the 316L stainless steel in an accelerated corrosion environment and compares it with a higher corrosion resistant nickel alloy (Inconel 625). The experimental work was designed according to ASTM G36 standard, the samples were immersed in a boiling magnesium chloride medium which provided the accelerated corrosion environment and the tested samples were shaped into U‐bend specimens as they underwent both plastic and elastic stresses. The specimens were then tested to determine the time required for cracks to initiate. The results of the experimental work showed that the main mode of failure was stress corrosion cracking initiated by the proven presence of chlorides, hydrogen sulfide, and water at elevated temperatures. Inconel 625 samples placed in the controlled environment showed better corrosion resistance as it took them an average of 56 days to initiate cracks, whereas it took an average of 24 days to initiate cracks in the stainless steel 316L samples. The scanning electron microscopy (SEM) micrographs showed that the cracks in the stainless steel 316L samples were longer, wider, and deeper compared to the cracks of Inconel 625.  相似文献   

10.
Y/Cr-modified aluminide coatings were prepared on a Ni-base superalloy K417G using a hybrid slurry/pack cementation process. The coatings consisted of a NiAl layer with dissolved Cr and Y. The microstructures and high temperature corrosion behavior of the coatings were characterized using SEM/EDS, XRD, EPMA and SIMS. Cyclic oxidation tests at 1000 °C for 200 h were carried out in air. The results indicated that specimens coated by either the Y/Cr-modified aluminide coatings or the simple aluminide coatings exhibited better oxidation resistances than the cast alloy. The Y/Cr-modified aluminide coatings possessed lower oxidation rates and better degradation resistance than the simple aluminide coatings during the oxidation tests. Furthermore, the alumina scales formed on the Y/Cr-modified aluminide coatings were considerably more adherent than those on the simple aluminide coatings during the thermal cycling. The hot corrosion tests consisted of applying a 25 wt% K2SO4 +75 wt% Na2SO4 salt mixture to the specimens and exposing at 900 °C. The Y/Cr-modified aluminide coatings showed the longest service life compared with the cast alloy and aluminide coatings, which suffered significant sulfur attack. After 200 h, the Y/Cr-modified aluminide coatings were still protective.  相似文献   

11.
Corrosion resistance of Inconel 625 Ni-based superalloy was studied in a molten nitrate salt consisting of 40 KNO3–60 NaNO3 (wt%) at 500 and 600 °C. Open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopy and gravimetric tests were used to evaluate the degradation mechanism and corrosion behavior of the alloy. Surface morphology and chemical analysis of corrosion products were characterized by means of scanning electron microscopy and energy-dispersive X-ray spectrometry. The weight-loss curves showed that with the increase in temperature, the oxidation rate and mass gain increased; the relationship between the mass gain and time was close to the parabolic oxidation law. The electrochemical corrosion results confirmed that during the exposure of Inconel 625 alloy to the molten salts, nickel dissolves as a result of non-protective NiO layer formed. The formation of a non-protective oxide layer with low barrier property was responsible for observing the weak corrosion resistance of the alloy at high temperatures (500 and 600 °C). Cyclic polarization tests showed a positive hysteresis confirming the nucleation and growth of stable pits on the surface of Inconel 625 at high anodic overpotentials. Sodium nitrite acts as an efficient pitting inhibitor for this case. In this way, the sodium nitrite with the concentration of 0.1 molal was found to have an optimum inhibition effect on pit nucleation at 600 °C.  相似文献   

12.
研究了TC4-316L异种金属铆接件在模拟海洋大气环境条件下的腐蚀行为。利用失重法、X射线光电子能谱分析(XPS)、扫描电子显微镜(SEM)、激光共聚焦显微镜等方法分析了试样的腐蚀动力学、锈层成分、腐蚀形貌。结果表明,TC4-316L铆接件在周期浸润实验1200 h后,316L不锈钢发生了腐蚀,而TC4钛合金并没有明显的腐蚀现象;316L不锈钢腐蚀产物包含FeOOH,Fe3O4和Fe2O3,而TC4钛合金表面主要为TiO2和Ti2O3等钛的氧化物组成的氧化膜。与单件316L不锈钢相比,由于电偶腐蚀与缝隙腐蚀的共同作用,TC4-316L铆接件中的316L不锈钢腐蚀加速。  相似文献   

13.
In order to replace the hazardous chromate‐based surface treatment, a new cerium chemical conversion coating was developed on 316L stainless steel through a mixed solution of hydrated cerium nitrate, citric acid, and hydrogen peroxide. The chemical composition was characterized by energy‐dispersive spectroscopy, X‐ray photoelectron spectroscopy and atomic force microscope. The dense conversion coating is composed of CeO2 with a small amount of Ce2O3 and has small grain size lower than 50 nm. Its thickness is about 47.4 nm as determined by spectroscopic ellipsometry analysis. Potentiodynamic polarization was used to study the corrosion behavior of the coatings in the concentrated artificial seawater at 72 °C. In comparison with the conventional nitric acid‐chromate passivated specimens, the cerium conversion coatings show much higher pitting potentials. It is suggested that the cerium conversion treatment is more effective than the nitric acid‐chromate passivation to improve the pitting resistance of 316L stainless steel used in the hot seawater environments.  相似文献   

14.
Frangini  S. 《Oxidation of Metals》2000,53(1-2):139-156
A kinetics study on AISI 316L stainless steel and ODS(Oxide-Dispersion-Strenghtened) FeAl iron aluminide was conducted concerningits corrosion behavior in moltenLi2CO3-K2CO3 eutectic at 650°C in flowingCO2-O2 gas mixtures. The corrosion resistance of FeAl ODS wasdemonstrated to be significantly superior to that of austenitic AISI 316Lsteel under all gas conditions tested in this work. At low CO2partial pressure (PCO2=0.3 atm) the corrosion rate of bothalloys decreased with time due to the formation of a protective oxidelayer. In dry CO2 gas, corrosion of AISI steel proceeded at anear-linear rate, indicative of a surface-controlled reaction. FeAl corrodedinitially following parabolic behavior, but, on further reaction, exhibitedsome weight loss. A similar behavior was also observed in a67CO2-33O2 gas mixture. Corrosion of FeAl in highCO2 gas has been postulated to initiate by acidic fluxing ofyttria particles. The attack then develops as pitting and leads to furtherreaction by general corrosion as a consequence of the formation ofactive-passive electrochemical cells between the interior of pits and theexternal surface. The weight loss of AISI 316L in67CO2-33O2 gas can be ascribed to the high oxidizing power ofthe gas causing a continuous dissolution of theCr2O3 layer into a soluble chromate.  相似文献   

15.
The high-temperature corrosion behaviors of five nickel alloy coatings used in coal-fired boilers in the Zhundong region (Xinjiang province) were investigated in simulated coal ash and coal-combusted flue gas environment at 650°C for 250 and 500 hr. The samples were analyzed by weight gain experiment, X-ray diffraction test, and scanning electron microscopy technique with energy-dispersive spectroscopy. The results indicated that the corrosion level is in the order of NiCrMo13 ≈ Hastelloy C-276 (276) > NiCrBSi > Inconel 718 (718) > 45CT. The compositions of the corrosion scale in five nickel alloy coatings mainly consist of NiO, Ni3S2, and Cr2O3. The enrichment of Cr in the corrosion scale in 45CT, 718, and NiCrBSi coatings inhibits the formation of oxide and sulfide on the coating surface. The presence of W and Mo in nickel alloy coatings accelerates the formation of corrosion products, thus weakening the corrosion resistance of NiCrMo13 and 276 in simulated coal ash and coal-combusted flue gas environment.  相似文献   

16.
Selective laser melting (SLM) has been applied to manufacture various alloy components with excellent properties, but its further application is restricted by the intrinsic defects. In this work, the internal defect distributions in samples of three alloys (316L stainless steel, AlSi10Mg and Inconel 718) were investigated respectively, considering the effects of geometrical characteristics of the samples. The defects in the 316L stainless steel sample tend to be formed densely in the central part with large wall thickness, indicating a strong sensitivity to heat accumulation. Contrarily, the Inconel 718 sample shows a higher relative density with homogeneous defect distribution, indicating better formability for the SLM process. For the AlSi10Mg sample, the defect density keeps increasing as the deposition goes on. Typically, the defect density located at sample edges shows an abnormally high level comparing with the inner part, especially in the top sections of AlSi10Mg and Inconel 718 samples. The results are helpful for the geometrical design, the adjustment of building orientation and the further optimization of process parameters in the SLM process.  相似文献   

17.
SAF2205双相不锈钢焊接热影响区在尿素介质中的腐蚀研究   总被引:1,自引:0,他引:1  
研究了SAF2205双相不锈钢和尿素级316不锈钢对接焊热影响区在工业尿素合成介质中的耐蚀性.实验结果表明,焊接线能量对热影响区的耐蚀性有重要影响,腐蚀最重处是在距离熔合线3-6mm区域,局部腐蚀深度随线能量的增加而增大.SAF2205不锈钢焊接线能量对热影响区腐蚀的敏感程度比316L不锈钢大.  相似文献   

18.
We report here for the first time on a metal corrosion screening study of a novel nitrogen-based fuel under high temperature and pressure continuous combustion. The fuel consists of an aqueous urea and ammonium nitrate solution. Three austenitic stainless steels (SS) 316L, 310S, 330 were tested for 200 h under 20 MPa. One coupon set was positioned in the hot reactor zone, while a second set was placed in a colder zone. The temperatures in the hot and cooler zones were 745 ± 5 and 545 ± 5 °C, respectively. Microstructure, chemical composition, depth profile, and oxide scale thickness were studied by SEM/EDS and TOF-SIMS analyses. The heaviest corrosion was observed in the hot reaction zone for 316L SS. No protective Cr-rich oxide films were found in the scales formed on all tested SS.  相似文献   

19.
In situ X-ray diffraction was used to identify the oxides formed on the AISI 316L (containing 2% Mo) stainless steel during isothermal oxidation at 800 °C, in air. Good oxidation behavior was observed on this steel when considering kinetics, structural characteristics and scale adherence. It was demonstrated that molybdenum plays a protective role in that it hinders the outward iron diffusion and leads to the lower growth rate and the better scale adherence. The oxide scale was then composed of Cr2O3 with a small amount of Mn1,5Cr1,5O4 at the external interface. Pre-oxidation of the AISI 316L also improved its aqueous corrosion resistance. No pitting corrosion occured during the corrosion test. Aqueous corrosion testing also showed that the oxide scale formed at 800 °C is crack-free and still adherent after cooling to room temperature.  相似文献   

20.
The corrosion resistance of T91 and A316L materials was tested in stagnant liquid lead-bismuth eutectic (LBE). The materials were exposed for 175, 500, 1250, 2300 and 3000 h at temperatures from 425 to 600 °C under 5%H2 + Ar cover gas atmosphere. Severe corrosion occurred at temperatures above 500 °C where three corrosion modes were distinguished: stable oxide film mode, transition mode, and final dissolution mode featuring Cr and Ni leaching and material loss. The principle corrosion mechanisms were uniform penetration and dissolution of the penetrated volumes. At these temperatures (>500 °C) T91 had a better corrosion resistance (corrosion rate ∼ ?137 μm/year) compared to A316L (?250 μm/year). The transition corrosion mode continued 2-3 times longer for T91 material due to residual oxides found even after 3000 h of exposure. At low temperatures (<450 °C) both materials showed good corrosion resistance but A316L performed better than T91 with corrosion rates 2-5 times lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号