首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 339 毫秒
1.
The problem of permanent fault diagnosis has been discussed widely, and the diagnosability of many well-known networks have been explored. Faults of a multiprocessor system generally include permanent and intermittent, with intermittent faults regarded as the most challenging to diagnose. In this paper, we investigate the intermittent fault diagnosability of hyper Petersen networks. First, we derive that an \(n\)-dimensional hyper Petersen network \(HP_{n}\) with fault-free edges is \((n - 1)_{i}\)-diagnosable under the PMC model. Then, we investigate the intermittent fault diagnosability of \(HP_{n}\) with faulty edges under the PMC model. Finally, we prove that an \(n\)-dimensional hyper Petersen network \(HP_{n}\) is \((n - 2)_{i}\)-diagnosable under the MM* model.  相似文献   

2.
In this paper a novel high-frequency fully differential pure current mode current operational amplifier (COA) is proposed that is, to the authors’ knowledge, the first pure MOSFET Current Mode Logic (MCML) COA in the world, so far. Doing fully current mode signal processing and avoiding high impedance nodes in the signal path grant the proposed COA such outstanding properties as high current gain, broad bandwidth, and low voltage and low-power consumption. The principle operation of the block is discussed and its outstanding properties are verified by HSPICE simulations using TSMC \(0.18\,\upmu \hbox {m}\) CMOS technology parameters. Pre-layout and Post-layout both plus Monte Carlo simulations are performed under supply voltages of \(\pm 0.75\,\hbox {V}\) to investigate its robust performance at the presence of fabrication non-idealities. The pre-layout plus Monte Carlo results are as; 93 dB current gain, \(8.2\,\hbox {MHz}\,\, f_{-3\,\text {dB}}, 89^{\circ }\) phase margin, 137 dB CMRR, 13 \(\Omega \) input impedance, \(89\,\hbox {M}\Omega \) output impedance and 1.37 mW consumed power. Also post-layout plus Monte Carlo simulation results (that are generally believed to be as reliable and practical as are measuring ones) are extracted that favorably show(in abovementioned order of pre-layout) 88 dB current gain, \(6.9\,\hbox {MHz} f_{-3\text {db}} , 131^{\circ }\) phase margin and 96 dB CMRR, \(22\,\Omega \) input impedance, \(33\,\hbox {M}\Omega \) output impedance and only 1.43 mW consumed power. These results altogether prove both excellent quality and well resistance of the proposed COA against technology and fabrication non-idealities.  相似文献   

3.
A fractor is a simple fractional-order system. Its transfer function is \(1/Fs^{\alpha }\); the coefficient, F, is called the fractance, and \(\alpha \) is called the exponent of the fractor. This paper presents how a fractor can be realized, using RC ladder circuit, meeting the predefined specifications on both F and \(\alpha \). Besides, commonly reported fractors have \(\alpha \) between 0 and 1. So, their constant phase angles (CPA) are always restricted between \(0^{\circ }\) and \(-90^{\circ }\). This work has employed GIC topology to realize fractors from any of the four quadrants, which means fractors with \(\alpha \) between \(-\)2 and +2. Hence, one can achieve any desired CPA between \(+180^{\circ }\) and \(-180^{\circ }\). The paper also exhibits how these GIC parameters can be used to tune the fractance of emulated fractors in real time, thus realizing dynamic fractors. In this work, a number of fractors are developed as per proposed technique, their impedance characteristics are studied, and fractance values are tuned experimentally.  相似文献   

4.
In this paper, we investigate the impact of the transmitter finite extinction ratio and the receiver carrier recovery phase offset on the error performance of two optically preamplified hybrid M-ary pulse position modulation (PPM) systems with coherent detection. The first system, referred to as PB-mPPM, combines polarization division multiplexing (PDM) with binary phase-shift keying and M-ary PPM, and the other system, referred to as PQ-mPPM, combines PDM with quadrature phase-shift keying and M-ary PPM. We provide new expressions for the probability of bit error for PB-mPPM and PQ-mPPM under finite extinction ratios and phase offset. The extinction ratio study indicates that the coherent systems PB-mPPM and PQ-mPPM outperform the direct-detection ones. It also shows that at \(P_b=10^{-9}\) PB-mPPM has a slight advantage over PQ-mPPM. For example, for a symbol size \(M=16\) and extinction ratio \(r=30\) dB, PB-mPPM requires 0.6 dB less SNR per bit than PQ-mPPM to achieve \(P_b=10^{-9}\). This investigation demonstrates that PB-mPPM is less complex and less sensitive to the variations of the offset angle \(\theta \) than PQ-mPPM. For instance, for \(M=16\), \(r=30\) dB, and \(\theta =10^{\circ }\) PB-mPPM requires 1.6 dB less than PQ-mPPM to achieve \(P_b=10^{-9}\). However, PB-mPPM enhanced robustness to phase offset comes at the expense of a reduced bandwidth efficiency when compared to PQ-mPPM. For example, for \(M=2\) its bandwidth efficiency is 60 % that of PQ-mPPM and \(\approx 86\,\%\) for \(M=1024\). For these reasons, PB-mPPM can be considered a reasonable design trade-off for M-ary PPM systems.  相似文献   

5.
The results of an ab?initio modelling of aluminium substitutional impurity (\({\hbox {Al}}_{\rm Ge}\)), aluminium interstitial in Ge [\({\hbox {I}}_{\rm Al}\) for the tetrahedral (T) and hexagonal (H) configurations] and aluminium interstitial-substitutional pairs in Ge (\({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\)) are presented. For all calculations, the hybrid functional of Heyd, Scuseria, and Ernzerhof in the framework of density functional theory was used. Defects formation energies, charge state transition levels and minimum energy configurations of the \({\hbox {Al}}_{\rm Ge}\), \({\hbox {I}}_{\rm Al}\) and \({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\) were obtained for ?2, ?1, 0, \(+\)1 and \(+\)2 charge states. The calculated formation energy shows that for the neutral charge state, the \({\hbox {I}}_{\rm Al}\) is energetically more favourable in the T than the H configuration. The \({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\) forms with formation energies of ?2.37 eV and ?2.32 eV, when the interstitial atom is at the T and H sites, respectively. The \({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\) is energetically more favourable when the interstitial atom is at the T site with a binding energy of 0.8 eV. The \({\hbox {I}}_{\rm Al}\) in the T configuration, induced a deep donor (\(+\)2/\(+1\)) level at \(E_{\mathrm {V}}+0.23\) eV and the \({\hbox {Al}}_{\rm Ge}\) induced a single acceptor level (0/?1) at \(E_{\mathrm {V}}+0.14\) eV in the band gap of Ge. The \({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\) induced double-donor levels are at \(E_{\rm V}+0.06\) and \(E_{\rm V}+0.12\) eV, when the interstitial atom is at the T and H sites, respectively. The \({\hbox {I}}_{\rm Al}\) and \({\hbox {I}}_{\rm Al}{\hbox {Al}}_{\rm Ge}\) exhibit properties of charge state-controlled metastability.  相似文献   

6.
We give a detailed account of the use of \(\mathbb {Q}\)-curve reductions to construct elliptic curves over \(\mathbb {F}_{p^2}\) with efficiently computable endomorphisms, which can be used to accelerate elliptic curve-based cryptosystems in the same way as Gallant–Lambert–Vanstone (GLV) and Galbraith–Lin–Scott (GLS) endomorphisms. Like GLS (which is a degenerate case of our construction), we offer the advantage over GLV of selecting from a much wider range of curves and thus finding secure group orders when \(p\) is fixed for efficient implementation. Unlike GLS, we also offer the possibility of constructing twist-secure curves. We construct several one-parameter families of elliptic curves over \(\mathbb {F}_{p^2}\) equipped with efficient endomorphisms for every \(p > 3\), and exhibit examples of twist-secure curves over \(\mathbb {F}_{p^2}\) for the efficient Mersenne prime \(p = 2^{127}-1\).  相似文献   

7.
This paper presents a new time-mode duty-cycle-modulation-based high-accuracy temperature sensor. Different from the well-known \({\varSigma }{\varDelta }\) ADC-based readout structure, this temperature sensor utilizes a temperature-dependent oscillator to convert the temperature information into temperature-related time-mode parameter values. The useful output information of the oscillator is the duty cycle, not the absolute frequency. In this way, this time-mode duty-cycle-modulation-based temperature sensor has superior performance over the conventional inverter-chain-based time domain types. With a linear formula, the duty-cycle output streams can be converted into temperature values. The design is verified in 65nm standard digital CMOS process. The verification results show that the worst temperature inaccuracy is kept within 1\(\,^{\circ }\mathrm{C}\) with a one-point calibration from \(-\)55 to 125 \(^{\circ }\mathrm{C}\). At room temperature, the average current consumption is only 0.8 \(\upmu \)A (1.1\(\,\upmu \)A in one phase and 0.5 \(\upmu \)A in the other) with 1.2 V supply voltage, and the total energy consumption for a complete measurement is only 0.384 \({\hbox {nJ}}\).  相似文献   

8.
In this work, two-channel perfect reconstruction quadrature mirror filter (QMF) bank has been proposed based on the prototype filter using windowing method. A novel window function based on logarithmic function along with the spline function is utilized for the design of prototype filter. The proposed window has a variable parameter ‘\(\alpha \)’, which varies the peak side lobe level and rate of fall-off side lobe level which in turn affects the peak reconstruction error (PRE) and amplitude distortion (\(e_{am}\)) of the QMF bank . The transition width of the prototype is controlled by the spline function using the parameter ‘\(\mu \)’. The perfect reconstruction condition is satisfied by setting the cutoff frequency (\(\omega _{c}\)) of the prototype low-pass filter at ‘\(\pi /2\)’. The performance of the proposed design method has been evaluated in terms of mean square error in the pass band, mean square error in the stop band, first side lobe attenuation (\(A_{1}\)), peak reconstruction error (PRE) and amplitude error (\(e_{am}\)) for different values of ‘\(\alpha \)’ and ‘\(\mu \)’. The results are provided and compared with the existing methods.  相似文献   

9.
In this paper, a wideband low noise amplifier (LNA) for 60 GHz wireless applications is presented. A single-ended two-stage cascade topology is utilized to realize an ultra-wideband and flat gain response. The first stage adopts a current-reused topology that performs the more than 10 GHz ultra-wideband input impedance matching. The second stage is a cascade common source amplifier that is used to enhance the overall gain and reverse isolation. By proper optimization of the current-reused topology and stagger turning technique, the two-stage cascade common source LNA provides low power consumption and gain flatness over an ultra-wide frequency band with relatively low noise. The LNA is fabricated in Global Foundries 65 nm RFCMOS technology. The measurement results show a maximum \(S_{21}\) gain of 11.4 dB gain with a \(-\)3 dB bandwidth from 48 to 62 GHz. Within this frequency range, the measured \(S_{11}\) and \(S_{12}\) are less than \(-\)10 dB and the measured DC power consumption is only 11.2 mW from a single 1.5 V supply.  相似文献   

10.
The slide attack, presented by Biryukov and Wagner, has already become a classical tool in cryptanalysis of block ciphers. While it was used to mount practical attacks on a few cryptosystems, its practical applicability is limited, as typically, its time complexity is lower bounded by \(2^n\) (where n is the block size). There are only a few known scenarios in which the slide attack performs better than the \(2^n\) bound. In this paper, we concentrate on efficient slide attacks, whose time complexity is less than \(2^n\). We present a number of new attacks that apply in scenarios in which previously known slide attacks are either inapplicable, or require at least \(2^n\) operations. In particular, we present the first known slide attack on a Feistel construction with a 3-round self-similarity, and an attack with practical time complexity of \(2^{40}\) on a 128-bit key variant of the GOST block cipher with unknown S-boxes. The best previously known attack on the same variant, with known S-boxes (by Courtois), has time complexity of \(2^{91}\).  相似文献   

11.
Differential thermal analysis (DTA) has been conducted on directionally solidified near-eutectic Sn-3.0 wt.%Ag-0.5 wt.%Cu (SAC), SAC \(+\) 0.2 wt.%Sb, SAC \(+\) 0.2 wt.%Mn, and SAC \(+\) 0.2 wt.%Zn. Laser ablation inductively coupled plasma mass spectroscopy was used to study element partitioning behavior and estimate DTA sample compositions. Mn and Zn additives reduced the undercooling of SAC from 20.4\(^\circ \hbox {C}\) to \(4.9^\circ \hbox {C}\) and \(2^\circ \hbox {C}\), respectively. Measurements were performed at cooling rate of \(10^\circ \hbox {C}\) per minute. After introducing 200 ppm \(\hbox {O}_2\) into the DTA, this undercooling reduction ceased for SAC \(+\) Mn but persisted for SAC \(+\) Zn.  相似文献   

12.
In this work, we present a self cascode based ultra-wide band (UWB) low noise amplifier (LNA) with improved bandwidth and gain for 3.1–10.6 GHz wireless applications. The self cascode (SC) or split-length compensation technique is employed to improve the bandwidth and gain of the proposed LNA. The improvement in the bandwidth of SC based structure is around 1.22 GHz as compared to simple one. The significant enhancement in the characteristics of the introduced circuit is found without extra passive components. The SC based CS–CG structure in the proposed LNA uses the same DC current for operating first stage transistors. In the designed UWB LNA, a common source (CS) stage is used in the second stage to enhance the overall gain in the high frequency regime. With a standard 90 nm CMOS technology, the presented UWB LNA results in a gain \(\hbox {S}_{21}\) of \(20.10 \pm 1.65\,\hbox {dB}\) across the 3.1–10.6 GHz frequency range, and dissipating 11.52 mW power from a 1 V supply voltage. However, input reflection, \(\hbox {S}_{11}\), lies below \(-\,10\) dB from 4.9–9.1 GHz frequency. Moreover, the output reflection (\(\hbox {S}_{22}\)) and reverse isolation (\(\hbox {S}_{12}\)), is below \(-\,10\) and \(-\,48\) dB, respectively for the ultra-wide band region. Apart from this, the minimum noise figure (\(\hbox {NF}_{min}\)) value of the proposed UWB LNA exists in the range of 2.1–3 dB for 3.1–10.6 GHz frequency range with a a small variation of \(\pm \,0.45\,\hbox {dB}\) in its \(\hbox {NF}_{min}\) characteristics. Linearity of the designed LNA is analysed in terms of third order input intercept point (IIP3) whose value is \(-\,4.22\) dBm, when a two tone signal is applied at 6 GHz with a spacing of 10 MHz. The other important benefits of the proposed circuit are its group-delay variation and gain variation of \(\pm \,115\,\hbox {ps}\) and \(\pm \,1.65\,\hbox {dB}\), respectively.  相似文献   

13.
In this paper, we propose and experimentally demonstrate a peak-to-average power ratio (PAPR) reduction scheme based on a new spreading code in direct detection optical orthogonal frequency division multiplexing (OFDM) system. The new spreading code with low cross correlation and high auto-correlation can support \(2N+1\) users. Thus, \(2N+1\) users or data symbols can be transmitted over only N subcarriers. The experimental results show that, after transmission over 70 km single-mode fiber, at the bit error rate of \(10^{-3}\), with fiber launch power of 2.75 dBm, the receiver sensitivity can be improved 2.1 dB by using the proposed scheme based on new spreading code. The PAPR can be reduced about 4.6 dB, compared with the original OFDM signal at a complementary cumulative distribution function of \(10^{-4}\).  相似文献   

14.
Three fractional-order transfer functions are analyzed for differences in realizing (\(1+\alpha \)) order lowpass filters approximating a traditional Butterworth magnitude response. These transfer functions are realized by replacing traditional capacitors with fractional-order capacitors (\(Z=1/s^{\alpha }C\) where \(0\le \alpha \le 1\)) in biquadratic filter topologies. This analysis examines the differences in least squares error, stability, \(-\)3 dB frequency, higher-order implementations, and parameter sensitivity to determine the most suitable (\(1+\alpha \)) order transfer function for the approximated Butterworth magnitude responses. Each fractional-order transfer function for \((1+\alpha )=1.5\) is realized using a Tow–Thomas biquad a verified using SPICE simulations.  相似文献   

15.
16.
We prove that Tandem-DM, one of the two “classical” schemes for turning an n-bit blockcipher of 2n-bit key into a double-block-length hash function, has birthday-type collision resistance in the ideal cipher model. For \(n=128\), an adversary must make at least \(2^{120.87}\) blockcipher queries to achieve chance 0.5 of finding a collision. A collision resistance analysis for Tandem-DM achieving a similar birthday-type bound was already proposed by Fleischmann, Gorski and Lucks at FSE 2009. As we detail, however, the latter analysis is wrong, thus leaving the collision resistance of Tandem-DM as an open problem until now. Our analysis exhibits a novel feature in that we introduce a trick never used before in ideal cipher proofs. We also give an improved bound on the preimage security of Tandem-DM. For \(n=128\), we show that an adversary must make at least \(2^{245.99}\) blockcipher queries to achieve chance 0.5 of inverting a randomly chosen point in the range. Asymptotically, Tandem-DM is proved to be preimage resistant up to \(2^{2n}/n\) blockcipher queries. This bound improves upon the previous best bound of \({{\varOmega }}(2^n)\) queries and is optimal (ignoring log factors) since Tandem-DM has range of size \(2^{2n}\).  相似文献   

17.
A secret-sharing scheme realizes a graph if every two vertices connected by an edge can reconstruct the secret while every independent set in the graph does not get any information on the secret. Similar to secret-sharing schemes for general access structures, there are gaps between the known lower bounds and upper bounds on the share size for graphs. Motivated by the question of what makes a graph “hard” for secret-sharing schemes (that is, they require large shares), we study very dense graphs, that is, graphs whose complement contains few edges. We show that if a graph with \(n\) vertices contains \(\left( {\begin{array}{c}n\\ 2\end{array}}\right) -n^{1+\beta }\) edges for some constant \(0 \le \beta <1\), then there is a scheme realizing the graph with total share size of \(\tilde{O}(n^{5/4+3\beta /4})\). This should be compared to \(O(n^2/\log (n))\), the best upper bound known for the total share size in general graphs. Thus, if a graph is “hard,” then the graph and its complement should have many edges. We generalize these results to nearly complete \(k\)-homogeneous access structures for a constant \(k\). To complement our results, we prove lower bounds on the total share size for secret-sharing schemes realizing very dense graphs, e.g., for linear secret-sharing schemes, we prove a lower bound of \(\Omega (n^{1+\beta /2})\) for a graph with \(\left( {\begin{array}{c}n\\ 2\end{array}}\right) -n^{1+\beta }\) edges.  相似文献   

18.
The flash-evaporation technique was utilized to fabricate undoped 1.35-μm and 1.2-μm thick lead iodide films at substrate temperatures \( T_{\rm{s}} = 150 \)°C and 200°C, respectively. The films were deposited onto a coplanar comb-like copper (Cu-) electrode pattern, previously coated on glass substrates to form lateral metal–semiconductor–metal (MSM-) structures. The as-measured constant-temperature direct-current (dc)-voltage (\( I\left( {V;T} \right) - V \)) curves of the obtained lateral coplanar Cu-PbI2-Cu samples (film plus electrode) displayed remarkable ohmic behavior at all temperatures (\( T = 18 - 90\,^\circ {\hbox{C}} \)). Their dc electrical resistance \( R_{\rm{dc}} (T \)) revealed a single thermally-activated conduction mechanism over the temperature range with activation energy \( E_{\rm{act}} \approx 0.90 - 0.98 \,{\hbox{eV}} \), slightly less than half of room-temperature bandgap energy \( E_{\rm{g}} \) (\( \approx \,2.3\, {\hbox{eV}} \)) of undoped 2H-polytype PbI2 single crystals. The undoped flash-evaporated \( {\hbox{PbI}}_{\rm{x}} \) thin films were homogeneous and almost stoichiometric (\( x \approx 1.87 \)), in contrast to findings on lead iodide films prepared by other methods, and were highly crystalline hexagonal 2H-polytypic structure with c-axis perpendicular to the surface of substrates maintained at \( T_{\rm{s}} { \gtrsim }150^\circ {\hbox{C}} \). Photoconductivity measurements made on these lateral Cu-PbI2-Cu-structures under on–off visible-light illumination reveal a feeble photoresponse for long wavelengths (\( \lambda > 570\,{\hbox{nm}} \)), but a strong response to blue light of photon energy \( E_{\rm{ph}} \) \( \approx \,2.73 \, {\hbox{eV}} \) (\( > E_{\rm{g}} \)), due to photogenerated electron–hole (e–h) pairs via direct band-to-band electronic transitions. The constant-temperature/dc voltage current–time \( I\left( {T,V} \right) - t \) curves of the studied lateral PbI2 MSM-structures at low ambient temperatures (\( T < 50^\circ {\hbox{C}} \)), after cutting off the blue-light illumination, exhibit two trapping mechanisms with different relaxation times. These strongly depend on \( V \) and \( T \), with thermally generated charge carriers in the PbI2 mask photogenerated (e–h) pairs at higher temperatures.  相似文献   

19.
The electrochemical, structural and magnetic properties of CoCu/Cu multilayers electrodeposited at different cathode potentials were investigated from a single bath. The Cu layer deposition potentials were selected as \(-\,0.3,\,\hbox {V}\) \(-\,0.4\,\,\hbox {V}\), and \(-\,0.5\,\hbox {V}\) with respect to saturated calomel electrode (SCE) while the Co layer deposition potential was constant at \(-\,1.5\,\hbox {V}\) versus SCE. For the electrochemical analysis, the current-time transients were obtained. The amount of noble non-magnetic (Cu) metal materials decreased with the increase of deposition potentials due to anomalous codeposition. Further, current-time transient curves for the Co layer deposition and capacitance were calculated. In the structural analysis, the multilayers were found to be polycrystalline with both Co and Cu layers adopting the face-centered cubic structure. The (111) peak shifts towards higher angle with the increase of the deposition potentials. Also, the lattice parameters of the multilayers decrease from 0.3669 nm to 0.3610 nm with the increase of the deposition potentials from \(-\,0.3\,\hbox {V}\) to \(-\,0.5\,\hbox {V}\), which corresponds to the bulk values of Cu and Co, respectively. The electrochemical and structural results demonstrate that the amount of Co atoms increased and the Cu atoms decreased in the layers with the increase of deposition potentials due to anomalous codeposition. For magnetic measurements, the saturation magnetizations, \(M_s\) obtained from the magnetic curves of the multilayers were obtained as 212 kA/m, 276 kA/m, and 366 kA/m with \(-\,0.3\,\hbox {V}\), \(-\,0.4\,\hbox {V}\), and \(-\,0.5\,\hbox {V}\) versus SCE, respectively. It is seen that the \(M_s\) values increased with the increase of the deposition potentials confirming the increase of the Co atoms and decrease of the Cu amount. The results of electrochemical and structural analysis show that the deposition potentials of non-magnetic layers plays important role on the amount of magnetic and non-magnetic materials in the layers and thus on the magnetic properties of the multilayers.  相似文献   

20.
In this paper, we propose an LC-VCO using automatic amplitude control and filtering technique to eliminate frequency noise around 2\(\omega _0\). The LC-VCO is designed with TSMC 130 nm CMOS RF technology, and biased in subthreshold regime in order to get more negative transconductance to overcome the losses in the LC-Tank and achieve less power consumption. The designed VCO operates at 5.17 GHz and can be tuned from 5.17 to 7.398 GHz, which is corresponding to 35.5% tuning range. The VCO consumes through it 495–440.5 \(\upmu\)W from 400 mV dc supply. This VCO achieves a phase noise of \(-\,122.3\) and \(-\,111.7\) dBc/Hz at 1 MHz offset from 5.17 and 7.39 GHz carrier, respectively. The calculated Figure-of-merits (FoM) at 1 MHz offset from 5.17 and 7.39 GHz is \(-\,199.7\) and \(-\,192.4\) dBc/Hz, respectively. And it is under \(-\,190.5\) dBc/Hz through all the tuning range. The FoM\(_T\) at 1 MHz offset from 5.17 GHz carrier is \(-\,210.6\) dBc/Hz. The proposed design was simulated for three different temperatures (\(-\,55\), 27, \(125\,^{\circ }\hbox {C}\)), and three supply voltages (0.45, 0.4, 0.35 V), it was concluded that the designed LC-VCO presents high immunity to PVT variations, and can be used for multi-standard wireless LAN communication protocols 802.11a/b/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号