首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We investigate the effect of feedback delay on the outage probability of multiple-input single-output (MISO) fading channels. Channel state information at the transmitter (CSIT) is a delayed version of the channel state information available at the receiver (CSIR). We consider two cases of CSIR: (a) perfect CSIR and (b) CSI estimated at the receiver using training symbols. With perfect CSIR, under a short-term power constraint, we determine: (a) the outage probability for beamforming with imperfect CSIT (BF-IC) analytically, and (b) the optimal spatial power allocation (OSPA) scheme that minimizes outage numerically. Results show that, for delayed CSIT, BF-IC is close to optimal for low SNR and uniform spatial power allocation (USPA) is close to optimal at high SNR. Similarly, under a longterm power constraint, we show that BF-IC is better for low SNR and USPA is better at high SNR. With imperfect CSIR, we obtain an upper bound on the outage probability with USPA and BF-IC. Results show that the loss in performance due to imperfection in CSIR is not significant, if the training power is chosen appropriately.  相似文献   

2.
Optimum power control over fading channels   总被引:1,自引:0,他引:1  
We study optimal constant-rate coding schemes for a block-fading channel with strict transmission delay constraint, under the assumption that both the transmitter and the receiver have perfect channel-state information. We show that the information outage probability is minimized by concatenating a standard “Gaussian” code with an optimal power controller, which allocates the transmitted power dynamically to the transmitted symbols. We solve the minimum outage probability problem under different constraints on the transmitted power and we derive the corresponding power-allocation strategies. In addition, we propose an algorithm that approaches the optimal power allocation when the fading statistics are not known. Numerical examples for different fading channels are provided, and some applications discussed. In particular, we show that minimum outage probability and delay-limited capacity are closely related quantities, and we find a closed-form expression for the delay-limited capacity of the Rayleigh block-fading channel with transmission over two independent blocks. We also discuss repetition diversity and its relation with direct-sequence or multicarrier spread-spectrum transmission. The optimal power-allocation strategy in this case corresponds to selection diversity at the transmitter. From the single-user point of view considered in this paper, there exists an optimal repetition diversity order (or spreading factor) that minimizes the information outage probability for given rate, power, and fading statistics  相似文献   

3.
We are concerned with transmit power optimization in a wireless relay network with various cooperation protocols. With statistical channel knowledge (in the form of knowledge of the fading distribution and the path loss information across all the nodes) at the transmitters and perfect channel state information at the receivers, we derive the optimal power allocation that minimizes high signal-to-noise ratio (SNR) approximations of the outage probability of the mutual information (MI) with amplify-and-forward (AF), decode-and-forward (DF) and distributed space-time coded (DSTC) relaying protocols operating over Rayleigh fading channels. We demonstrate that the high SNR approximation-based outage probability expressions are convex functions of the transmit power vector, and the nature of the optimal power allocation depends on whether or not a direct link between the source and the destination exists. Interestingly, for AF and DF protocols, this allocation depends only on the ratio of mean channel power gains (i.e., the ratio of the source-relay gain to the relay-destination gain), whereas with a DSTC protocol this allocation also depends on the transmission rate when a direct link exists. In addition to the immediate benefits of improved outage behavior, our results show that optimal power allocation brings impressive coding gains over equal power allocation. Furthermore, our analysis reveals that the coding gain gap between the AF and DF protocols can also be reduced by the optimal power allocation  相似文献   

4.
基于信道统计特性的中继选择算法   总被引:2,自引:0,他引:2  
该文提出了一种在非再生协作网络中,基于信道统计特性的最优中继选择方法。首先在等功率条件下,根据信道统计特性,定义一个等效信道增益的参数,该参数反映了中继节点在协作过程中两个阶段的信道特性。然后提出一种基于该参数的降序排列的中继选择方法。该方法在不同的信噪比范围内,选择不同的节点集合,使得系统的吞吐率中断概率最小。分析表明该选择方法的分集增益阶数能达到N+1,N为中继节点数目。仿真结果表明这种中继选择算法的中断概率性能优于其他算法。该方法进一步与功率分配相结合,构成了一种低复杂度的次优的中继选择方法。仿真结果表明这种次优算法能够取得和穷举算法相似的性能。  相似文献   

5.
In this paper, we analyze the performance of multi-hop multi-branch amplify-and-forward (AF) networks over generalized fading channels. Using the moment generating function (MGF)-based approach, we develop general expressions for the outage probability and symbol-error rate (SER) performance of the system with maximal ratio combining (MRC) receiver. The MGF-based approach relies on numerical integration. To gain insights into system performance, we therefore investigate the asymptotic outage and SER performance of the system with MRC and selection combining (SC) receiver at the destination. In particular, we develop the asymptotic statistics of the end-to-end signal-to-noise ratio (SNR) of an AF multi-hop link. We further derive the cumulative density function of the sum of the individual end-to-end SNRs, received from different diversity paths for MRC receiver. We also study the power allocation problem in a multi-hop multi-branch system with MRC receiver. In generalized Gamma fading environments, we seek to find the power allocation strategy that maximizes the SNR at the destination subject to a total power constraint. By means of simulations, we validate our theoretical developments and verify the efficiency of our proposed power allocation in improving the received SNR compared to a generic cooperative system with no power allocation. We also conclude that our asymptotic expressions for the outage probability and SER match the simulations very well in medium-to-high-SNR regime.  相似文献   

6.
In this paper, we analyze optimal (in space and time) adaptive power transmission policies for fading channels when the channel-state information (CSI) at the transmitter (CSIT) and the receiver (CSIR) is available. The transmitter has a long-term (time) average power constraint. There can be multiple antennas at the transmitter and at the receiver. The channel experiences Rayleigh fading. We consider beamforming and space-time coded systems with perfect/imperfect CSIT and CSIR. The performance measure is the bit error rate (BER). We show that in both coded and uncoded systems, our power allocation policy provides exponential diversity order if perfect CSIT is available. We also show that, if the quality of CSIT degrades then the exponential diversity is retained in the low SNR region but we get only polynomial diversity in the high SNR region. Another interesting conclusion is that in case of imperfect CSIT and CSIR, knowledge of CSIT at the receiver is very important. Finally, for the optimal power control policy of the uncoded system we find the error-exponents which provide the rate versus diversity-order tradeoff for this policy. This tradeoff is of an entirely different nature than the well-known Zheng-Tse tradeoff.  相似文献   

7.
针对瑞利衰落信道下双向多中继协作通信系统,为了降低中断概率,提出了一种基于最小化中断概率的中继选择策略和功率分配方案。首先联合考虑两条链路的中继节点处信噪比和信道增益实现双链路中继选择,然后推导出一种新的最优中继下双向放大转发协作中断概率的近似表达式上界,并利用凸优化求解得到使中断概率最小的最优功率分配解。仿真结果表明,与现有策略相比,提出的策略能够明显降低系统中断概率和误码率,显著提高系统性能。  相似文献   

8.
Free-space optical (FSO) links offer gigabit per second data rates and low system complexity, but suffer from atmospheric loss due to fog and scintillation. Radio-frequency (RF) links have lower data rates, but are relatively insensitive to weather. Hybrid FSO/RF links combine the advantages of both links. Currently, selection or ?hard-switching? is performed between FSO or RF links depending on feedback from the receiver. This technique is inefficient since only one medium is used at a time. In this paper, we develop a ?soft-switching? scheme for hybrid FSO/RF links using short-length Raptor codes. Raptor encoded packets are sent simultaneously on both links and the code adapts to the conditions on either link with very limited feedback. A set of short-length Raptor codes (k = 16 to 1024) are presented which are amenable to highspeed implementation. A practical Raptor encoder and decoder are implemented in an FPGA and shown to support a 714 Mbps data rate with a 97 mW power consumption and 26360 gate circuit scale. The performance of the switching algorithms is simulated in a realistic channel model based on climate data. For a 1 Gbps FSO link combined with a 96 Mbps WiMAX RF link, an average rate of over 472 Mbps is achieved using the implemented Raptor code while hard-switching techniques achieved 112 Mbps on average.  相似文献   

9.
Due to the rapid development of satellite laser communication technology, free-space optical (FSO) links present a promising alternative to traditional radio frequency (RF) links. In this paper, taking the influence of weather factors into consideration, we investigate the performance of the hybrid FSO/RF links where the feeder link operates in the FSO band and the user link operates in the hybrid FSO/RF band. Specifically, the FSO feeder link is modeled by the gamma–gamma distribution in the presence of beam wander and pointing error, and the detection method adopts either the intensity modulation with direct intensity (IM/DD) or heterodyne detection. The RF user link is assumed to follow the shadowed Rician model. In addition, in order to improve the transmission rate of the link under the time-varying satellite–terrestrial channel, a rate adaptation scheme is proposed. The performance of the system under study is evaluated in terms of the outage probability, average bit error rate (BER), and average transmission rate. Our results provide some important insights, for example, (1) due to the constraints of the feeder link and weather factors, there is an upper limit on the outage performance and bit error rate of the hybrid link; (2) the adaptive transmission strategy can significantly improve the transmission rate of the link compared with traditional design.  相似文献   

10.
In this work, an amplify‐and‐forward variable‐gain relayed mixed RF‐FSO system is studied. The considered dual‐hop system consists of a radio frequency (RF) link followed by a free space optical (FSO) channel. The RF link is affected by short‐term multipath fading and long‐term shadowing effects and is assumed to follow the generalized‐K fading distribution that approximates accurately several important distributions often used to model communication channels. The FSO channel experiences fading caused by atmospheric turbulence that is modeled by the gamma‐gamma distribution characterizing moderate and strong turbulence conditions. The FSO channel also suffers path loss and pointing error induced misalignment fading. The performance of the considered system is analyzed under the collective influence of distribution shaping parameters, pointing errors that result in misalignment fading, atmospheric turbulence, and path loss. The moment‐generating function of the Signal power to noise power ratio measured end‐to‐end for this system is derived. The cumulative distribution function for the Signal power to noise power ratio present between the source and destination receiver is also evaluated. Further, we investigate the error and outage performance and the average channel capacity for this system. The analytical expressions in closed form for the outage probability, symbol and bit error rate considering different modulation schemes and channel capacity are also derived. The mathematical expressions obtained are also demonstrated by numerical plots.  相似文献   

11.
This paper investigates the performance of a dual-hop mixed relay system with radio frequency (RF) and free-space optics (FSO) communication under the effect of pointing error (PE) and atmospheric turbulence (AT). This paper considers a system where RF and FSO links are cascaded. The RF link is modeled by Nakagami-m fading, and the FSO link is modeled as gamma–gamma (G-G) fading channel. Both the channel models use orthogonal frequency division multiplexing (OFDM) with M-ary quadrature amplitude modulation (QAM). The expressions for probability density function, cumulative distribution function, signal-to-noise ratio, and ergodic capacity are derived. The moment generating function (MGF) of fading and the bit error rate (BER) of the OFDM-based M-ary QAM scheme is derived in terms of Meijer's G-function. It has been observed that, in fixed gain relay systems, the modulation scheme's BER is dominated by the SNR of the RF link. While in a variable gain relay system, the turbulence conditions of the FSO system affect the SNR and the BER of the modulation method. The feasibility of heterodyne detection and intensity modulation direct detection (IM/DD) is analyzed in terms of outage probability and ergodic capacity. The results can be used to choose the optimal modulation order and relay system for QAM-OFDM-based optical wireless systems.  相似文献   

12.
We study the power allocation problem in a transmit diversity wireless system with mean channel gain information. In Rayleigh fading for a given set of mean channel gains and nodes, we seek to find the power allocation that minimizes the outage probability subject to a total power constraint. The optimal solution is shown to be computationally intensive when the number of channels is large. Instead, we derive a simple solution based on the upper bound to the outage probability which can be summarized as equal power allocation with channel selection. Numerical results show that the proposed solution is near-optimal over a wide range of parameter values. The problem addressed and the solution are relevant to a decode-and-forward cooperative relaying system with only partial channel information available to the relays.  相似文献   

13.
网络编码在双向多中继系统中已经得到了广泛地研究,并有效地提高了双向多中继系统的吞吐量。首先本文导出了在译码转发方式时,独立正交信道和多接入信道下基于网络编码的双向多中继系统平均中断概率表达式。Monte Carlo仿真和理论分析非常吻合,验证了理论分析的正确性。之后分析了系统平均中断性能在不同信噪比和不同中继节点个数等多种情形下与功率分配因子的关系,揭示了功率分配因子与系统总功率和中继节点数量之间的内在关系。仿真结果表明,双向多中继系统采用网络编码进行传输时,在独立正交信道下和多接入信道下的功率分配因子取值在区间 内能够获得最优的系统中断概率性能,并且多接入信道下的系统中断性能要好于独立正交信道。   相似文献   

14.
Outage Capacity of the Fading Relay Channel in the Low-SNR Regime   总被引:1,自引:0,他引:1  
In slow-fading scenarios, cooperation between nodes can increase the amount of diversity for communication. We study the performance limit in such scenarios by analyzing the outage capacity of slow fading relay channels. Our focus is on the low signal-to-noise ratio (SNR) and low outage probability regime, where the adverse impact of fading is greatest but so are the potential gains from cooperation. We showed that while the standard Amplify-Forward protocol performs very poorly in this regime, a modified version we called the Bursty Amplify-Forward protocol is optimal and achieves the outage capacity of the network. Moreover, this performance can be achieved without a priori channel knowledge at the receivers. In contrast, the Decode-Forward protocol is strictly suboptimal in this regime. Our results directly yield the outage capacity per unit energy of fading relay channels  相似文献   

15.
We derive the performance limits of a radio system consisting of a transmitter with t antennas and a receiver with r antennas, a block-fading channel with additive white Gaussian noise (AWGN), delay and transmit-power constraints, and perfect channel-state information available at both the transmitter and the receiver. Because of a delay constraint, the transmission of a codeword is assumed to span a finite (and typically small) number M of independent channel realizations; therefore, the relevant performance limits are the information outage probability and the “delay-limited” (or “nonergodic”) capacity. We derive the coding scheme that minimizes the information outage probability. This scheme can be interpreted as the concatenation of an optimal code for the AWGN channel without fading to an optimal beamformer. For this optimal scheme, we evaluate minimum-outage probability and delay-limited capacity. Among other results, we prove that, for the fairly general class of regular fading channels, the asymptotic delay-limited capacity slope, expressed in bits per second per hertz (b/s/Hz) per decibel of transmit signal-to-noise ratio (SNR), is proportional to min (t,r) and independent of the number of fading blocks M. Since M is a measure of the time diversity (induced by interleaving) or of the frequency diversity of the system, this result shows that, if channel-state information is available also to the transmitter, very high rates with asymptotically small error probabilities are achievable without the need of deep interleaving or high-frequency diversity. Moreover, for a large number of antennas, delay-limited capacity approaches ergodic capacity  相似文献   

16.
Cognitive radio is able to share the spectrum with primary licensed user, which greatly improves the spectrum efficiency. We study the optimal power allocation for cognitive radio to maximize its ergodic capacity under interference outage constraint. An optimal power allocation scheme for the secondary user with complete channel state information is proposed and its approximation is presented in closed form in Rayleigh fading channels. When the complete channel state information is not available, a more practical transmitter-side joint access ratio and transmit power constraint is proposed. The new constraint guarantees the same impact on interference outage probability at primary user receiver. Both the optimal power allocation and transmit rate under the new constraint are presented in closed form. Simulation results evaluate the performance of proposed power allocation schemes and verify our analysis.  相似文献   

17.
For pt.I see ibid., vol.47, no.3, p.1083-1102 (2002). We study three capacity regions for fading broadcast channels and obtain their corresponding optimal resource allocation strategies: the ergodic (Shannon) capacity region, the zero-outage capacity region, and the capacity region with outage. In this paper, we derive the outage capacity regions of fading broadcast channels, assuming that both the transmitter and the receivers have perfect channel side information. These capacity regions and the associate optimal resource allocation policies are obtained for code division (CD) with and without successive decoding, for time division (TD), and for frequency division (FD). We show that in an M-user broadcast system, the outage capacity region is implicitly obtained by deriving the outage probability region for a given rate vector. Given the required rate of each user, we find a strategy which bounds the outage probability region for different spectrum-sharing techniques. The corresponding optimal power allocation scheme is a multiuser generalization of the threshold-decision rule for a single-user fading channel. Also discussed is a simpler minimum common outage probability problem under the assumption that the broadcast channel is either not used at all when fading is severe or used simultaneously for all users. Numerical results for the different outage capacity regions are obtained for the Nakagami-m (1960) fading model  相似文献   

18.
This paper considers a cognitive radio network where a secondary user (SU) coexists with a primary user (PU). The interference outage constraint is applied to protect the primary transmission. The power allocation problem to jointly maximize the ergodic capacity and minimize the outage probability of the SU, subject to the average transmit power constraint and the interference outage constraint, is studied. Suppose that the perfect knowledge of the instantaneous channel state information (CSI) of the interference link between the SU transmitter and the PU receiver is available at the SU, the optimal power allocation strategy is then proposed. Additionally, to manage more practical situations, we further assume only the interference link channel distribution is known and derive the corresponding optimal power allocation strategy. Extensive simulation results are given to verify the effectiveness of the proposed strategies. It is shown that the proposed strategies achieve high ergodic capacity and low outage probability simultaneously, whereas optimizing the ergodic capacity (or outage probability) only leads to much higher outage probability (or lower ergodic capacity). It is also shown that the SU performance is not degraded due to partial knowledge of the interference link CSI if tight transmit power constraint is applied.  相似文献   

19.
In this paper, we utilize piecewise linear (PL) approximation to analyze the performance of cooperative free space optical (FSO) network employing differentially modulated binary phase shift keying (DBPSK) data with multiple decode-and-forward (DF) relays. The maximum-likelihood (ML) decoding rule at the destination is approximated by PL approximation which considers the possibility of erroneous relaying and performs very similar to the ML decoder with reduced decoding complexity. The atmospheric fading optical links are modeled by Gamma–Gamma distribution subject to both types of detection techniques, i.e., heterodyne detection and intensity modulation/direct detection (IM/DD) with pointing error. We analytically formulate the probability of error for the multiple-DF relay-based FSO network. However, the novel unified expression of average bit error rate (BER) of PL decoder with single relay and single source to destination pair is derived. Further, we also derive the asymptotic approximate BER of DF-FSO network with multiple relays at high signal-to-noise ratio (SNR) of source to relay links considering heterodyne detection with negligible pointing error. In addition, the unified closed-form expressions of outage probability with single and multiple DF relays are derived in terms of Meijer G function. The expression of outage probability is examined at high SNR in order to obtain analytical diversity order. The impact of different power distribution techniques on outage probability is determined by utilizing power distribution parameters. The derived analytical results are validated through simulation.  相似文献   

20.
Performance of M-PSK with GSC and EGC with Gaussian weighting errors   总被引:2,自引:0,他引:2  
Using a moment-generating function (MGF)-based approach, we study the performance of M-ary phase-shift keying (M-PSK) with generalized selection combining (GSC) and equal gain combining (EGC) in fading channels (including Rayleigh, Rician, Nakagami-m, and Nakagami-q fading) with independent and identically distributed (i.i.d) branches. Analytical expressions for the error and outage probabilities, the signal-to-noise-ratio (SNR) statistics, and the channel capacity of M-PSK diversity receivers are derived, taking into account the effects of Gaussian weighting errors and all relevant system and channel parameters. Unlike the case of perfect channel-state information (CSI), the outage probability for the case of imperfect channel estimation (ICE) is not only a function of the normalized SNR with respect to the SNR threshold, but also a function of the operating SNR itself. The SNR loss of the M-PSK GSC and EGC receivers due to ICE and the relation between the receiver input and output SNRs for ICE are derived. Our results show that, even with ICE, GSC and EGC are effective in improving the output SNR and significantly reduce the error floor and the channel-capacity loss caused by ICE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号